Вступи в группу https://vk.com/pravostudentshop

«Решаю задачи по праву на studentshop.ru»

Опыт решения задач по юриспруденции более 20 лет!

 

 

 

 


«Система Мира Ньютона и Эйнштейна. Принцип соответствия»

/ КСЕ
Конспект, 

Оглавление

 

Вторая научная революция завершалась творчеством одного из величайших ученых в истории человечества, каковым был Исаак Ньютон (1643–1727). Его научное наследие чрезвычайно разнообразно. В него входит и создание (параллельно с Лейбницем, но независимо от него) дифференциального и интегрального исчисления, и важные астрономические наблюдения, которые Ньютон проводил с помощью собственноручно построенных зеркальных телескопов (он так же, как и Галилей, именно телескопу обязан первым признаниям своих научных заслуг), и большой вклад в развитие оптики.

Ньютон сформулировал три основных закона движения, которые легли в основу механики как науки. Первый закон механики Ньютона–это принцип инерции, впервые сформулированным еще Галилеем: всякое тело сохраняет состояние покоя или равномерного и прямолинейного движения до тех пор, пока оно не будет вынуждено изменить его под действием каких-то сил. Существо второго закона механики Ньютона состоит в констатации того факта, что приобретаемое телом под действием какой-то силы ускорение прямо пропорционально этой действующей силе и обратно пропорционально массе тела. Наконец, трети закон механики Ньютона – это закон равенства действия и противодействия. Этот закон гласит, что действия двух тел друг на друга всегда равны по величине и направлены в противоположные стороны.

Данная система законов движения была дополнена открытым Ньютоном законом всемирного тяготения, согласно которому все тела, независимо от их свойств и от свойств среды, в которой они находятся, испытывают взаимное притяжение, прямо пропорциональное их массами обратно пропорциональное квадрату расстояния между ними.

Пожалуй, ни одно из всех ранее сделанных научных открытий не оказало такого громадного влияния на дальнейшее развитие естествознания, как открытие закона всемирного тяготения. Огромное впечатление на ученых производил масштаб обобщения, впервые достигнутый естествознанием. Это был поистине универсальный закон природы, которому подчинялось все–малое и большое, земное и небесное. Этот закон явился основой создания небесной механики – науки, изучающей движение тел Солнечной системы.

Созданная Ньютоном теория тяготения и его вклад в астрономию знаменуют последний этап преобразования аристотелевской картины мира, начатого Коперником. Ибо представление о сферах, управляемых перводвигателем или ангелами по приказу бога, Ньютон успешно заменил представлением о механизме, действующем на основании простого естественного закона.

Воображение ученых захватывала простота той картины мира, которая складывалась на основе ньютоновской классической механики. В этой картине, носящей абстрактный характер, отбрасывалось все «лишнее»: не имели значения размеры небесных тел, их внутреннее строение, идущие в них бурные процессы. Оставались только массы и расстояния между центрами этих масс. Как пишет известный японский физик Х. Юкава, «Ньютон многое отсеку реального мира, о котором размышляют физики... Конечно, Ньютон абстрагируется, но он оставляет самое существенное и создает единую картину мира. Ему принадлежит, по крайней мере, построение теории Солнечной системы. Это один из миров. Остается еще... и множество других миров, В них он не успел разобраться, но Солнечная система прекрасно воссоздана в рамках его механики».

          Принцип постоянства скорости света наряду с принципом, что во всех движущихся с постоянной скоростью (равномерно) и прямолинейно друг относительно друга (инерциальных) системах, справедливы одинаковые законы природы, легли в специальной теории относительности (СТО) Эйнштейна, опубликованную в 1905 г. в статье «К электродинамике движущих тел». Эйнштейн пришел к выводу, что мирового эфира – особой среды, которая могла быть принята в качестве абсолютной системы – не существует. В специальной теории относительности свойства пространства и времени рассматриваются без учета гравитационных полей, которые не являются инерциальными.

          Из двух принципов – постоянства скорости света и расширенного принципа относительности Галилея – математически следует все положения специальной теории относительности (СТО). Если скорость света постоянна для всех инерциальных систем, а они все равноправны, то физические величины длины тела, промежутка времени, массы для разных систем отсчета будут различными. Для  промежутка же времени, длительности какого-либо процесса наоборот. Время как бы растягивается, течь медленнее в движущейся системе по отношению к неподвижной, в которой этот процесс будет более быстрым. Необходимо подчеркнуть, что эффекты специальной теории относительности будут обнаруживаться при скоростях, близких к световым. При скоростях значительно меньше скорости света формулы СТО переходят в формулы классической механики. 

          Общая теория относительности распространяет законы природы на все, в том числе на неинерциальные системы. Постоянство скорости света и одинаковость законов природы порождают удивительные следствия (противоречащие, на первый взгляд, здравому смыслу) и симметрии в описании этих законов. Помимо относительности расположения, движения и покоя наблюдателей различных инерциальных систем из двух принципов следует относительность одновременности событий, времени (длительности), процессов, размеров объектов и их масс. Более того, как правило сложение скоростей, порождаемое СТО приводит к предельности (максимальности) скорости света для объектов, движущихся с досветовыми скоростями.

          Симметрия математического описания физических явлений и процессов при точной словесной интерпретации звучит так: если частица движется со скоростью, меньшей (большей) с в одной инерциальной системе отсчета, то тогда она движется со скоростью, меньшей (большей) с во всех инерциальных систем отсчета. (Относительная скорость инерциальных систем отсчета по определению меньше или равна с.) Таким образом, скорость света является барьером в двух смыслах. В соответствии с симметрией релятивистского выражения для сложения скоростей скорость с верхний (нижний) предел для частицы, движущейся со субсветовой (сверхсветовой) скоростью.

          В общей теории относительности (ОТО), или теории тяготения, Эйнштейн расширяет принцип относительности, распространяя его на неинерциальные системы. В ней он также исходит из экспериментального факта эквивалентности масс инерционных и гравитационных, или эквивалентности инерционных и гравитационных полей. Правда, принцип эквивалентности справедлив только при строго локальных наблюдениях. Так, представим себе лифт, стоящий на Земле. Наблюдатель в лифте бросает два шара. Они будут двигаться по направлению к центру Земли и, следовательно, друг другу. Если же мы будем тянуть лифт с ускорением g в пустоте, то те же шары будут двигаться параллельно друг другу. Но несмотря на это ограничение, принцип эквивалентности играет важную роль  в науке. Мы всегда можем вычислить непосредственно действие сил инерции на любую физическую систему, и это дает нам возможность знать действие поля тяготения, отвлекаясь от его неоднородности, которая часто незначительна.

          Какие же следствия для пространства и времени вытекают из общей теории относительности? Для этого нужно обратиться вначале к геометрии, которая возникла прежде всего как учение о физическом пространстве, измерении земельных площадей и строительных сооружений. Но уже в древности появилась теоретическая, аксиоматическая геометрия Евклида, которая оставалась единственной до XIX в. Правда, до конца XIX в. не делалось какого-либо различия между теоретической и физической геометрией. С геометрией Евклида связывался тот взгляд, что пространство везде одно и то же. Она исходила из пяти аксиом или постулатов. Многих математиков не удовлетворил пятый постулат, который гласил, что из одной точки на плоскости можно провести только одну прямую, которая не будет пересекаться с данной, сколько бы ее не продолжали. Этот постулат не был очевиден, так как никто не мог его экспериментально подтвердить даже в воображении – нельзя же линию продолжать в бесконечность. Ряд известных математиков пытались доказать, что этот постулат на самом деле является теоремой, т.е. его можно вывести из четырех других. Но все их попытки оказались неудачными. И лишь Н.И. Лобачевский в России, Б. Риман в Германии и Я. Больяй в Венгрии построили новые геометрии, отбросив пятый постулат и заменив его на другие.

          Создатели геометрий Лобачевский и Риман считали, что только физические эксперименты могут показать нам, какова геометрия нашего мира. Эйнштейн в общей теории относительности сделал геометрию физической экспериментальной наукой, которая подтвердила характер пространства Римана. Это можно понять с помощью мысленного эксперимента. Представим себе, что лифт покоится в отсутствии гравитационного поля (см. рис. 1, а). В стене лифта сделано отверстие А, через которое луч света падает на его противоположную строну. Линия АВ – прямая. Пусть теперь лифт начинает движение вверх с ускорением g, т.е. 9,8 м/с. За время, пока свет проходит расстояние между стенками, лифт смещается вверх, и луч света попадает уже не в точку В, а в точку С (см. рис. 1, б). Линия АС сохраняет свойство быть кратчайшим расстоянием между двумя точками, но это будет уже не прямая, а прямейшая или геодезическая. На Земле, поверхность которой представляет собой сферу, такие линии и называются геодезическими. Общая теория относительности заменяет закон тяготения Ньютона новым уравнением тяготения. Закон Ньютона получается как предельный случай эйнштейновских уравнений. Рассчитанное теоретически Эйнштейном отклонение луча света было впоследствии экспериментально подтверждено наблюдениями во время солнечного затмения, когда луч света от звезды проходит вблизи тяготения Солнца.

          В общей теории относительности Эйнштейн доказал, что структура пространства-времени определяется распределением масс материи. Когда корреспондент американской газеты «Нью-Йорк Таймс» спросил Эйнштейна в апреле 1921 г., в чем суть теории относительности, он ответил: «Суть такова: раньше считали, что если каким-нибудь чудом все материальные вещи исчезли бы вдруг, то пространство и время остались бы. Согласно же теории относительности вместе с вещами исчезли бы и пространство и время».   

                                                                  Рис. 1

         

 

       
   
 

 

 

 


2.Иерархия материального мира

           В современной науке в основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета, организм или галактика, можем быть рассмотрен как сложное образование, включающее в себя составные части, организованные в целостность. Для обозначения целостности объектов в науке было выработано понятие системы.

           Система представляет собой совокупность элементов и связей между ними.

           Понятие элемент означаем минимальный, далее уже неделимый компонент в рамках системы. Элемент являемся таковым лишь по отношению к данной системе, в других же отношениях он сам может представлять сложную систему.

           Совокупность связей между элементами образуем структуру системы.

           Устойчивые связи элементов определяют упорядоченность системы, существуют два типа связей между элементами системы – по «горизонтали» и по «вертикали».

           Связи по «горизонтали» – это связи координации между одно-порядковыми элементами.     Они носят коррелирующий характер: ни одна часть системы не можем измениться без того, чтобы не изменились другие части.

           Связи по «вертикали» – это связи субординации, т.е. соподчинения элементов. Они выражают сложное внутреннее устройство системы, где одни части по своей значимости могут уступать другим и подчиняться им. Вертикальная структура включает в себя уровни организации системы, а также их иерархию.

           Исходным пунктом всякого системного исследования являемся представление о целостности изучаемой системы.

           Целостность системы означает, что все ее составные части, соединяясь вместе, образуют уникальное целое, обладающее новыми интегративными свойствами.

           Свойства системы – не просто сумма свойств ее элементов, а нечто новое, присущее только системе в целом. Например, молекула воды Н2О. Сам по себе водород, два атома которого образуют дачную систему, горит, а кислород (в нее входит один атом) поддерживает горение. Система же, образовавшаяся из этих элементов, вызвала к жизни совсем иное, именно интегративное свойство: вода гасит огонь. Наличие свойств, присущих системе в целом, но не ее частям, определяется взаимодействием элементов.

           Итак, согласно современным научным взглядам на природу, все природные объекты представляют собой упорядоченные, структурированные, иерархически организованные системы.

           В естественных науках выделяются два больших класса материальных систем: системы неживой природы и системы живой природы.

           В неживой природе в качестве структурных уровней организации материи выделяют элементарные частицы, атомы, молекулы, поля, физический вакуум, макроскопические тела, планеты и планетные системы, звезды и звездные системы – галактики, системы галактик – метагалактику.

           В живой природе к структурным уровням организации материи относят системы доклеточного уровня – нуклеиновые кислоты и белки; клетки как особый уровень биологической организации, представленные в форме одноклеточных организмов и элементарных единиц живого вещества; многоклеточные организмы растительного и животного мира; надорганизменные структуры, включающие в себя виды, популяции и биоценозы и, наконец, биосферу как всю массу живого вещества.

           В природе все взаимосвязано, поэтому можно выделить такие системы, которые включают в себя элементы как живой, так и неживой природы – биогеоценозы.

          Естественные науки, начав изучение материального мира с наиболее простых непосредственно воспринимаемых человеком материальных объектов, переходят далее к изучению материальных объектов глубинных структур материи, выходящих за пределы человеческого восприятия и несоизмеримых с объектами повседневного опыта.

          Применяя системный подход, естествознание не просто выделяет типы материальных систем, а раскрываем их связь и соотношение.

           В науке выделяются три уровня строения материи.

          Макромиp – мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время – в секундах, минутах, часах, годах.

          Микромир – мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляемся от 10-8 до 10-16, а время жизни – от бесконечности до 10-24 сек.

          Мегамир – мир огромных космических масштабов и скоростей, расстояние в котором измеряемся световыми годами, а время существования космических объектов – миллионами и миллиардами лет.

          И хотя на этих уровнях действуют свои специфические закономерности, микро-, макро- и мегамиры теснейшим образом взаимосвязаны.

 

3.Первое и второе начало термодинамики. Границы их применимости. «Тепловая смерть Вселенной»

История открытия закона сохранения превращения энергии привела к изучению тепловых явлений в двух направлениях: термодинамическом, изучающем тепловые процессы без учета молекулярного строения вещества, и молекулярно-кинетическом. Молекулярно-кинетическая теория явилась развитием упоминаемой выше кинетической теории вещества (альтернативной теплородной). Она характеризуется рассмотрением различных макропрояв-лений систем как результатов суммарного действия огромной совокупности хаотически движущихся молекул. При этом молекулярно-кинетическая теория использует статистический метод, интересуясь не движением отдельных молекул, а только средними величинами, которые характеризуют движение огромной совокупности частиц. Отсюда другое ее название – статистическая физика. Оформившись к середине XIX века, оба эти направления, подходя к рассмотрению изменения состояния вещества с различных точек зрения,, дополняют друг друга, образуя одно целое.

До тех пор, пока Клаузиус и Томсон, исследуя более подробно работу тепловой машины Карно, не пришли к выводу (независимо друг от друга) о том, что в основе цикла Карно лежат два независимых принципа – первое и второе начала термодинамики, нельзя было с твердой уверенностью принять закон сохранения энергии. По существу, работы Джоуля, Майера и Кольдинга устанавливают первое начало термодинамики. Клаузиус первым высказал мысль об эквивалентности работы и количества теплоты как о первом начале термодинамики и записал уравнение, которое не содержалось в работе Карно. Надо было сделать вывод о том, что всякое тело имеет внутреннюю энергию, которую Клаузиус называл «теплом, содержащемся в теле» (U) в отличие от «тепла, сообщенного телу»(Q). Величину U можно увеличить двумя эквивалентными способами – произведя над телом механическую работу (А) или сообщая ему количество теплоты (Q):

AU = А + Q.

В 1860 году Уильям Томсон, заменив термином «энергия» устаревший термин «силы», записывает первое начало термодинамики, которое он называет «основным положением механической теплоты»:

количество теплоты, сообщенное газу, = увеличению внутренней энергии газа + совершению внешней работы.

Следует еще раз подчеркнуть важное значение установления эквивалентности теплоты и работы. Именно понимание количества теплоты как меры изменения внутренней энергии способствовало установлению закона сохранения и превращения энергии.

В 1865 году Клаузиус ввел новое понятие энтропия (entropia – от греческого слова «поворот», «превращение»). Клаузиус посчитал, что существует некоторая величина S, которая, подобно энергии, давлению, температуре, характеризует состояние газа. Когда к газу подводится некоторое количество теплоты AQ, то энтропия S возрастает на

величину, равную

AS = AQ/T.

В течение длительного времени ученые не делали различий между такими понятиями как температура и теплота. Однако ряд явлений указывал на то, что эти понятия следует различать. Так, при таянии льда теплота расходуется, а температура льда не изменяется в процессе плавления. После введения Клаузиусом понятия энтропии стало понятно, где пролегает граница четкого различения таких понятий как теплота и температура. Дело в том, что нельзя говорить о каком-то количестве теплоты, заключенном в теле. Это понятие не имеет смысла. Теплота может передаваться от тела к телу, переходить в работу, возникать при трении, но при этом она не является сохраняющейся величиной. Поэтому теплота определяется в физике не как вид энергии, а как мера изменения энергии. В то же время введенная Клаузиусом энтропия оказалась величиной, сохраняющейся в обратимых процессах. Это означает, что энтропия системы может рассматриваться как функция состояния системы, ибо изменение ее не зависит от вида процесса, а определяется только начальным и конечным состояниями системы. Покажем, что в идеальном цикле Карно энтропия сохраняется.

Рассмотрим величину δQ, которое означает бесконечно малое приращение теплоты, настолько малое, что состояние системы характеризуется одним и тем же значением температуры, неизменным по всему объему рассматриваемой системы. То есть предполагается, что система во все моменты времени находится в тепловом и механическом равновесии, и любое изменение ее состояния слагается из последовательности равновесных состояний, каждое из которых лишь бесконечно мало отличается от предшествующего. Именно такой характер поведения системы реализуется в обратимых процессах.

Если процесс обратимый, как в круговом цикле Карно, то

ΔQ11+ ΔQ22=0

Из этого соотношения следует, что энтропия рабочего тела на первой стадии возрастает ровно настолько, насколько она уменьшается на третьей стадии. На второй и на четвертой стадиях энтропия рабочего тела не изменяется, так как процессы здесь протекают адиабатически, без теплообмена.

Иными словами, в случае обратимых процессов AS = О, то есть

S = const – энтропия изолированной системы в случае обратимых процессов постоянна.

При необратимых процессах получаем закон возрастания энтропии:

AS>0.

Для того чтобы осуществить обратимый процесс, необходимо добиться очень медленного расширения или сжатия рабочего тела, чтобы изменения системы представляли собой последовательность равновесных состояний. В таком цикле совершение какой-либо полезной работы потребует бесконечно большого времени. Чтобы получить работу в короткие промежутки времени, то есть хорошую мощность, приходится нарушать условия идеального цикла. А это сразу приведет к неодинаковости температуры на разных участках системы, к потокам тепла от более горячих участков к менее горячим, то есть к возрастанию энтропии системы.

Для описания термодинамических процессов I начала термодинамики оказывается недостаточно, ибо I начало термодинамики не позволяет определить направление протекания процессов в природе. Тот факт, что энтропия изолированной системы не может убывать, а только возрастает и достигает максимального значения в равновесном состоянии, является отражением того, что в природе возможны процессы, протекающие только в одном направлении – в направлении передачи тепла только от более горячих тел менее горячим.

Существуют различные формулировки II начала термодинамики. Все они являются эквивалентными. Приведем некоторые из них:

1. Невозможны такие процессы, единственным конечный результатом которых был бы переход тепла от тела, менее нагретого, к телу, более нагретому.

В природе возможны процессы, протекающие только в одном направлении – в направлении передачи тепла только от более горячих тел менее горячим.

2. КПД любой тепловой машины всегда меньше 100%, то есть невозможен вечный двигатель (перпетуум-мобиле) IIрода (так как невозможно построить тепловую машину, работающую не за счет перепада теплоты, а за счет теплоты одного нагревателя).

КПД любой реальной тепловой машины всегда меньше КПД идеальной тепловой машины.

3. Энтропия изолированной системы при протекании необратимых процессов возрастает, ибо система, предоставленная самой себе, переходит из менее вероятного состояния в более вероятное. Энтропия системы, находящейся в равновесном состоянии, максимальна и постоянна. (AS > 0).

Дальнейшее развитие принципа необратимости, принципа возрастания энтропии состояло в распространении этого принципа на бесконечную Вселенную в целом. Уильям Томсон экстраполировал принцип возрастания энтропии на крупномасштабные процессы, протекающие в природе. Клаузиус распространил этот принцип на Вселенную в целом, что привело его к гипотезе о тепловой смерти Вселенной. Все физические процессы протекают в направлении передачи тепла от более горячих тел к менее горячим; это означает, что медленно, но верно идет процесс выравнивания температуры во Вселенной. Следовательно, будущее вырисовывается перед нами в достаточно трагических тонах: исчезновение температурных различий и превращение всей мировой энергии в теплоту, равномерно распределенную во Вселенной. Отсюда Клаузиус делает вывод о том, что: «1. Энергия мира постоянна. 2. Энтропия мира стремится к максимуму». Экстраполяционный вывод о грядущей тепловой смерти Вселенной, означающей прекращение каких-либо физических процессов вследствие перехода Вселенной в равновесное состояние с максимальной энтропией, на протяжении всего дальнейшего развития привлекает внимание ученых, ибо затрагивает как глубинные проблемы чисто научного характера, таки философско-мировоззренческие, ибо указывает определенную верхнюю границу возможности существования человечества. С научной точки зрения возникают проблемы правомерности следующих экстраполяций, высказанных Клаузиусом:

1. Вселенная рассматривается как замкнутая система.

2. Эволюция мира может быть описана как смена его состояний.

3. Для мира как целого состояние с максимальной энтропией имеет смысл, как и для любой конечной системы.

Проблемы эти представляют несомненную трудность и для современной физической теории. Решение их следует искать в общей теории относительности и развивающейся на ее основе современной космологии. Многие теоретики считают, что в общей теории относительности мир как целое должен рассматриваться не как замкнутая система, а как система, находящаяся в переменном гравитационном поле; в связи с этим применение закона возрастания энтропии не приводит к выводу о необходимости статистического равновесия.

 



0
рублей


© Магазин контрольных, курсовых и дипломных работ, 2008-2024 гг.

e-mail: studentshopadm@ya.ru

об АВТОРЕ работ

 

Вступи в группу https://vk.com/pravostudentshop

«Решаю задачи по праву на studentshop.ru»

Опыт решения задач по юриспруденции более 20 лет!