Вступи в группу https://vk.com/pravostudentshop

«Решаю задачи по праву на studentshop.ru»

Опыт решения задач по юриспруденции более 20 лет!

 

 

 

 


«Ответы на вопросы по КСЕ»

/ КСЕ
Конспект, 

Оглавление

1.Фундаментальные взаимодействия в природе и их особенности

          

           взаимодействие происходит на уровне атомных ядер и представляет собой взаимное притяжение и отталкивание их составных частей. Оно действует Элементарные частицы участвуют во всех видах известных взаимодействий. Различают четыре вида фундаментальных взаи­модействий в природе: сильное, электромагнитное, слабое и гравитационное.

           Сильное на расстоянии порядка 10-13 см. При определенных условиях сильное взаимодействие очень прочно связывает частицы, в результате чего образуются мате­риальные системы с высокой энергией связи – атомные ядра. Именно по этой причине ядра атомов являются весьма устой­чивыми, их трудно разрушить.

           Электромагнитное взаимодействие примерно в тысячу раз слабее сильного, но значительно более дальнодействующее. Взаимодействие такого типа свойственно электрически заря­женным частицам. Носителем электромагнитного взаимодейст­вия является не имеющий заряда фотон – квант электромаг­нитного поля. В процессе электромагнитного взаимодействия электроны и атомные ядра соединяются в атомы, атомы – в молекулы. В определенном смысле это взаимодействие являет­ся основным в химии и биологии.

           Слабое взаимодействие возможно между различными части­цами. Оно простирается на расстояние порядка 10-15 – 10-22 см и связано главным образом с распадом частиц, например, с происходящими в атомном ядре превращениями нейтрона в протон, электрон и антинейтрино. В соответствии с современ­ным уровнем знаний большинство частиц нестабильны именно благодаря слабому взаимодействию.

           Гравитационное взаимодействие – самое слабое, не учиты­ваемое в теории элементарных частиц, поскольку на характер­ных для них расстояниях порядка 10-13 см оно дает чрезвычай­но малые эффекты. Однако на ультрамалых расстояниях (порядка 10-33 см) и при ультрабольших энергиях гравитация вновь приобретает существенное значение. Здесь начинают проявляться необычные свойства физического вакуума. Сверхтяжелые виртуальные частицы создают вокруг себя заметное гравитационное поле, которое начинает искажать геометрию пространства. В космических масштабах гравитационное взаи­модействие имеет решающее значение. Радиус его действия неограничен.

           От силы взаимодействия зависит время, в течение которого совершается превращение элементарных частиц. Ядерные ре­акции, связанные с сильными взаимодействиями, происходят в течение 10-24 – 10-23 с. Это приблизительно тот кратчайший интервал времени, за который частица, ускоренная до высоких энергий, до скорости, близкой скорости света, проходит через элементарную частицу размером порядка 10-13 см. Изменения, обусловленные электромагнитными взаимодействиями, осуще­ствляются в течение 10-19 – 10-21 с, а слабыми (например, рас­пад элементарных частиц) – в основном 10-10 с.

           По времени различных превращений можно судить о силе связанных с ними взаимодействий.

           Все четыре взаимодействия необходимы и достаточны для построения разнообразного мира. Без сильных взаимодействий не существовали бы атомные ядра, а звезды и Солнце не могли бы генерировать за счет ядерной энергии теплоту и свет. Без электромагнитных взаимодействий не было бы ни ато­мов, ни молекул, ни макроскопических объектов, а также тепла и света. Без слабых взаимодействий не были бы возможны ядерные реакции в недрах Солнца и звезд, не происходили бы вспышки сверхновых звезд и необходимые для жизни тяжелые элементы не могли бы распространиться во Вселенной. 

 


2.Горячая модель вселенной

 

Как бы не решался вопрос о многообразии космологиче­ских моделей, очевидно, что наша Вселенная расширяется, эволюционирует. Согласно теоретическим расчетам Ж. Леметра, радиус Вселенной в первоначальном состоянии был 10-12см, что близко по размерам к радиусу электрона, а ее плотность составляла 1096г/см3. В сингулярном состоянии Вселенная представляла собой микрообъект ничтожно малых размеров. 

От первоначального сингулярного состояния Вселенная пе­решла к расширению в результате Большого взрыва. Начиная с конца 40-х гг. нашего века все большее внимание в космологии привлекает физика процессов на разных этапах космологиче­ского расширения. Ученик А. А. Фридмана Г. А. Гамов разра­ботал модель горячей Вселенной, рассматривая ядерные реак­ции, протекавшие в самом начале расширения Вселенной, и назвал ее «космологией Большого взрыва». 

Ретроспективные расчеты определяют возраст Вселенной в 13–20 млрд. лет. Г. А. Гамов предположил, что температура ве­щества была велика и падала с расширением Вселенной. Его расчеты показали, что Вселенная в своей эволюции проходит определенные этапы, в ходе которых происходит образование химических элементов и структур. В современной космологии для наглядности начальную стадию эволюции Вселенной делят на «эры».

Эра адронов (тяжелых частиц, вступающих в сильные взаи­модействия). Продолжительность эры 0,0001 с, температура 1012 градусов по Кельвину, плотность 1014г/см3. В конце эры происходит аннигиляция частиц и античастиц, но остается не­которое количество протонов, гиперонов, мезонов. 

Эра лептонов (легких частиц, вступающих в электромагнит­ное взаимодействие). Продолжительность эры 10 с, температу­ра 1010 градусов по Кельвину, плотность 104г/см3. Основную роль играют легкие частицы, принимающие участие в реакциях между протонами и нейтронами.

Фотонная эра. Продолжительность 1 млн. лет. Основная до­ля массы – энергии Вселенной – приходится на фотоны. К концу эры температура падает с 1010до 3000 градусов по Кель­вину, плотность – с 104 г/см3 до 1021 г/см3. Главную роль игра­ет излучение, которое в конце эры отделяется от вещества.

Звездная эра наступает через 1 млн. лет после зарождения Вселенной. В звездную эру начинается процесс образования протозвезд и протогалактик.

Затем разворачивается грандиозная картина образования структуры Метагалактики.

 


3.Процессы переноса тепла, массы и электрического заряда

 

Установлению закона сохранения и превращения энер­гии способствовало открытие эффектов, отличных от механических и тепловых, а также превращения других форм движения в тепловую энергию. Еще Майер в своей работе составляет таблицу всех рассматриваемых им «сил» природы и приводит 25 случаев их взаимопревращений. Рассмотрев превращение теплоты в механическую рабо­ту, имеющее место в функционировании паровой машины, он говорит об электрической «силе» и превращении меха­нического эффекта в «электричество», о «химической силе вещества», о превращении «химической силы» в теплоту и электричество. Он распространяет положение о сохранении и превращении этих различных «сил» природы на живые орга­низмы, утверждая, что при поглощении пищи в организме постоянно происходят химические процессы, результатом которых являются тепловые и механические эффекты.

Исследования электрических явлений давали серьезные основания для подкрепления вывода о взаимопревращении различных форм движения друг в друга. В 1800 году Вольт изобретает первый химический источник электрического тока. В 1840 году русский академик Гесс получает важные результаты, свидетельствующие о превращении химичес­ких «сил» в теплоту. Работы Фарадея и Ленца приводят к открытиям о превращении электричества и магнетизма. Изучение процессов, происходящих в контактах двух металлических проводников, проделанных Пельтье и Ленцем, свидетельствуют о взаимопревращениях электриче­ской «силы» и теплоты. В 1845 году Джоуль устанавливает соотношение между величиной количества теплоты, выде­ляемой при прохождении электрического тока через про­водник, и величиной самого тока и сопротивления провод­ника (закон Джоуля–Ленца).

Итак, на протяжении более четырех десятилетий фор­мировался один из самых великих принципов современной науки, приведший к объединению самых различных явлений природы. Принцип этот гласит, что существует определен­ная величина, называемая энергией, которая не меняется ни при каких превращениях, происходящих в природе. Исклю­чений из закона сохранения энергии не существует. Истори­ками науки открытие закона сохранения превращения энергии рассматривается как первая революция в физике.

 



0
рублей


© Магазин контрольных, курсовых и дипломных работ, 2008-2024 гг.

e-mail: studentshopadm@ya.ru

об АВТОРЕ работ

 

Вступи в группу https://vk.com/pravostudentshop

«Решаю задачи по праву на studentshop.ru»

Опыт решения задач по юриспруденции более 20 лет!