Вступи в группу https://vk.com/pravostudentshop

«Решаю задачи по праву на studentshop.ru»

Решение задач по юриспруденции [праву] от 50 р.

Опыт решения задач по юриспруденции 20 лет!

 

 

 

 


«Ответы на вопросы по БЖД»

/ БЖД
Конспект, 

Оглавление

 

11. Охарактеризуйте систему стандартов безопасности труда (ССБТ).

     ССБТ – комплекс взаимосвязанных стандартов, содержащих требования, нормы и правила, направленные на обеспечение безопасности, сохранение здоровья и работоспособности человека в процессе труда, кроме вопросов, регулируемых трудовым законодательством.

     ССБТ не исключает действия норм и правил, утвержденных органами государственного надзора в соответствии с положением об этих органах. Нормы и правила, утверждаемые органами государственного надзора, и стандарты ССБТ должны быть взаимно увязаны.

     Требования, установленные стандартами ССБТ в соответствии с областью их распространения, должны быть учтены в стандартах и технических условиях, в нормативно-технической, а также в конструкторской, технологической и проектной документации.

    ССБТ включает группы, приведенные в таблице.

 

Шифр группы

Наименование группы

0

Организационно-методические стандарты

1

Стандарты требований и норм по видам опасных и вредных производственных факторов

2

Стандарты требований безопасности к производственному оборудованию

3

Стандарты требований безопасности к производственным процессам

4

Стандарты требований к средствам защиты работающих

 

 

    Стандарты группы «0»  устанавливают:

    организационно-методические основы стандартизации в области безопасности труда (цели, задачи и структура системы, внедрение и контроль за соблюдением стандартов ССБТ, терминология в области безопасности труда, классификация опасных и вредных производственных факторов и др.);

   требования (правила) к организации работ, направленных на обеспечение безопасности труда (обучение работающих безопасности труда, аттестация персонала,, методы оценки состояния безопасности труда и др.).

   Стандарты группы «1»  устанавливают:

  требования по видам опасных и вредных производственных факторов, предельно допустимые значения их параметров и характеристик;

  методы контроля нормируемых параметров и характеристик опасных и вредных производственных факторов;

  методы защиты работающих от опасных и вредных производственных факторов.

    Стандарты группы «2»  устанавливают:

   общие требования безопасности к производственному оборудованию;

   требования безопасности к отдельным группам (видам) производственного оборудования;

    методы контроля выполнения требований безопасности.

     Стандарты группы «3»  устанавливают:

     общие требования безопасности к производственным процессам;

     требования безопасности к отдельным группам (видам) технологических процессов;

     методы контроля выполнения требований безопасности.

      Стандарты группы «4»  устанавливают:

      требования к отдельным классам, видам и типам средств защиты;

      методы контроля и оценки средств защиты;

       классификацию средств защиты.

      Обозначение государственного стандарта ССБТ состоит из индекса (ГОСТ), регистрационного номера, первые две цифры которого (12) определяют принадлежность стандарта к комплексу ССБТ, последующая цифра с точкой указывает группу стандарта и три последующие цифры – порядковый номер стандарта в группе. Через тире указывается год утверждения стандарта.

      Примеры: ГОСТ 12.1.025, ГОСТ 12.2.046.0, ГОСТ 12.3.036, ГОСТ 12.4.031.

      Стандарты ССБТ должны иметь групповой заголовок: «Система стандартов безопасности труда» .

      Объектами стандартизации ССБТ являются правила, нормы и требования, направленные на обеспечение безопасности труда:

1) основные положения системы стандартов безопасности труда;

2) метрологическое обеспечение безопасности труда;

3) классификация опасных и вредных производственных факторов;

4) термины и определения основных понятий в области безопасности труда;

5) общие требования безопасности по видам опасных и вредных производственных факторов (общие требования электробезопасности, пожаро- и взрывобезопасности и др.), а также методы защиты работающих от этих факторов;

6) методы контроля нормируемых параметров опасных и вредных производственных факторов;

7) предельно допустимые значения параметров опасных и вредных производственных факторов.

 8) общие требования безопасности к производственному оборудованию и к группам производственного оборудования, а также методы контроля и оценки выполнения требований безопасности;

9) общие требования безопасности к комплексам производственного оборудования, работающим в автоматическом и/или полуавтоматическом режимах, и методы контроля;

10) общие требования безопасности к производственным процессам и видам технологических процессов, а также методы контроля выполнения требований безопасности;

11) классификация средств защиты работающих;

12) общие технические требования к классам и видам средств защиты работающих;

13) методы контроля и оценки защитных и гигиенических свойств средств защиты работающих;

14) номенклатура показателей качества классов и видов средств защиты работающих;

15) общие требования к маркировке средств защиты работающих;

16) требования к цветам и знакам безопасности.


32. Достоинства и недостатки ламп накаливания и люминесцент­ных ламп. Светильники, применяемые для тех или других ламп. Основные характеристики светильника.

Для искусственного освещения применяют электрические лампы двух типов – лампы накаливания (ЛН) и газоразрядные лампы (ГЛ).

Лампы накаливания относятся к источникам света теплового излучения. Видимое излучение (свет) в них получается в результате нагрева электрическим током вольфрамовой нити.

В газоразрядных лампах видимое излучение возникает в результате электрического разряда в атмосфере инертных газов или паров металлов, которыми заполняется колба лампы. Газоразрядные лампы называют люминесцентными, т.к. изнутри колбы покрыты люминофором, который под действием ультрафиолетового излучения, излучаемого электрическим разрядом, светится, преобразуя тем самым невидимое ультрафиолетовое излучение в свет.

Лампы накаливания наиболее широко распространены в быту из-за своей простоты, надежности и удобства эксплуатации. Находят они применение и на производстве, организациях и учреждениях, но в значительно меньшей степени. Это связано с их существенными недостатками: низкой светоотдачей – от 7 до 20 лм/Вт (светоотдача лампы – это отношение светового потока лампы к ее электрической мощности); небольшим сроком службы – до 2500 часов; преобладанием в спектре желтых и красных лучей, что сильно отличает спектральный состав искусственного света от солнечного. В маркировке ламп накаливания буква В обозначает вакуумные лампы, Г – газонаполненные, К – лампы с криптоновым наполнением, Б – биспиральные лампы.

Газоразрядные лампы получили наибольшее распространение на производстве, в организациях и учреждениях прежде всего из-за значительно большей светоотдачи (40... 110 лм/Вт) и срока службы (8000...12 000 часов). Из-за этого газоразрядные лампы в основном применяются для освещения улиц, иллюминации, световой рекламы. Подбирая сочетание инертных газов, паров металлов, заполняющих колбы ламп, и люминоформа, можно получить свет практически любого спектрального диапазона – красный, зеленый, желтый и т.д. Для освещения в помещениях наибольшее распространение получили люминесцентные лампы дневного света, колба которых заполнена парами ртути. Свет, излучаемый такими лампами, близок по своему спектру к солнечному свету.

К газоразрядным относятся различные типы люминесцентных ламп низкого давления с разным распределением светового потока по спектру: лампы белого света (ЛБ); лампы холодно-белого света (ЛХБ); лампы с улучшенной цветопередачей (ЛДЦ); лампы тепло-белого света (ЛТБ); лампы, близкие по спектру к солнечному свету (ЛЕ); лампы холодно-белого света улучшенной цветопередачи (ЛХБЦ).

К газоразрядным лампам высокого давления относятся: дуговые ртутные лампы высокого давления с исправленной цветностью (ДРЛ); ксеноновые (ДКсТ), основанные на излучении дугового разряда в тяжелых инертных газах; натриевые высокого давления (ДНаТ); металлогалогенные (ДРИ) с добавкой йодидов металлов.

Лампы ЛЕ, ЛДЦ применяются в случаях, когда предъявляются высокие требования к определению цвета, в остальных случаях – лампы ЛБ, как наиболее экономичные. Лампы ДРЛ рекомендуются для производственных помещений, если работа не связана с различением цветов (в высоких цехах машиностроительных предприятий и т.п.), и наружного освещения. Лампы ДРИ имеют высокую световую отдачу и улучшенную цветность, применяются для освещения помещений большой высоты и площади.

Источники света обладают различной яркостью. Максимальная переносимая человеком яркость при прямом наблюдении составляет 7500 кд/м2.

Однако газоразрядные лампы наряду с преимуществами перед лампами накаливания обладают и существенными недостатками, которые пока ограничивают их распространение в быту.

Это пульсация светового потока, которая искажает зрительное восприятие и отрицательно воздействует на зрение. При освещении газоразрядными лампами может возникнуть стробоскопический эффект, заключающийся в неправильном восприятии скорости движения предметов. Опасность стробоскопического эффекта при использовании газоразрядных ламп состоит в том, что вращающиеся части механизмов могут показаться неподвижными и стать причиной травматизма. Пульсации освещенности вредны и при работе с неподвижными поверхностями, вызывая быстрое утомление зрения и головную боль.

Ограничение пульсаций до безвредных значений достигается равномерным чередованием питания ламп от различных фаз трехфазной сети, специальными схемами подключения. Однако это усложняет систему освещения. Поэтому люминесцентные лампы не нашли широкого применения в быту. К недостаткам газоразрядных ламп относится: длительность их разгорания, зависимость их работоспособности от температуры окружающей среды, создание радиопомех.

Другой причиной, по-видимому, является следующее обстоятельство. Психологическое и отчасти физиологическое воздействие на человека цветности излучения источников света несомненно в значительной степени связано с теми световыми условиями, к которым человечество приспособилось за время своего существования. Далекое и холодное голубое небо, создающее в течение большей части светового дня высокие освещенности, вечером – близкий и горячий желто-красный костер, а затем пришедшие ему на смену, но аналогичные по цветности «лампы сгорания» , создающие, однако, низкие освещенности, – таковы световые режимы, приспособлением к которым, вероятно, объясняются следующие факты. У человека наблюдается более работоспособное состояние днем при свете преимущественно холодных оттенков, а вечером при теплом красноватом свете лучше отдыхать. Лампы накаливания дают теплый красновато-желтый цвет и способствуют успокоению и отдыху, люминесцентные лампы, наоборот, создают холодный белый цвет, который возбуждает и настраивает на работу.

От применяемого типа источников света зависит правильность цветопередачи. Например, темно-синяя ткань при свете ламп накаливания кажется черной, желтый цветок – грязно-белым. Т.е. лампы накаливания искажают правильную цветопередачу. Однако есть предметы, которые люди привыкли видеть преимущественно вечером при искусственном освещении, например, золотые украшения «естественнее»  выглядят при свете ламп накаливания, чем при свете люминесцентных ламп. Если при выполнении работы важна правильность цветопередачи – например, на уроках рисования, в полиграфической промышленности, картинных галереях и т.д. – лучше применять естественное освещение, а при его недостаточности – искусственное освещение люминесцентных ламп.

Таким образом, правильный выбор цвета для рабочего места значительно способствует повышению производительности труда, безопасности и общему самочувствию работников. Отделка поверхностей и оборудования, находящегося в рабочей зоне, точно также способствует созданию приятных зрительных ощущений и приятной рабочей обстановки.

Для более эффективного использования светового потока и ограничения ослепленности электрические лампы устанавливают в осветительной арматуре. Ослепление происходит, когда в поле зрения находится яркий источник света; результатом его является уменьшение способности различать предметы. Рабочие, которые постоянно подвергаются ослеплению, могут страдать от глазного напряжения, а также и от функциональных расстройств, хотя часто они этого не осознают.

Ослепление может быть прямым, когда оно вызвано нахождением ярких источников света в поле зрения, или отраженным, когда свет отражается от поверхностей с высоким коэффициентом отражения. Избежать ослепления достаточно просто, и сделать это можно несколькими способами. Одним из способов, например, является установка сеток под источниками освещения; можно также использовать охватывающие диффузоры или параболические рефлекторы, которые могут направлять свет туда, куда нужно, или установить источники света так, чтобы они были вне угла зрения.

Если в светильнике используется лампа без осветительной арматуры, то вряд ли распределение света будет приемлемым, и система почти наверняка будет неэкономичной. В таких случаях эта лампа будет источником ослепления для людей, находящихся в комнате, а эффективность установки будет значительно снижена из-за бликов.

Арматура с лампой называется светильником. Для регулирования светового потока в осветительной арматуре используются следующие методы.

1.Ограничение светового потока. Если лампа установлена в непрозрачном корпусе только с одним отверстием для выхода света, то распределение света будет очень ограничено.

2.Отражение светового потока. Метод использует отражающие поверхности, которые могут быть самыми разнообразными, от глубоко матовых до сильно отражающих или зеркальных. Метод более эффективен, чем ограничение светового потока, т.к. световое излучение концентрируется и направляется в зону, где необходимо освещение.

3.Рассеяние светового потока. Лампа устанавливается в прозрачном материале, рассеивающим и создающим диффузный (рассеянный) световой поток. Диффузоры поглощают некоторое количество излучаемой световой энергии, что снижает общий коэффициент полезного действия светильника, однако при этом исключается ослепляющее действие источника света.

4.Рефракция светового потока. Метод использует эффект призмы, где обычно стеклянный или пластмассовый материал призмы «искривляет»  лучи света и таким образом перенаправляет световой поток. Метод очень эффективен для общего освещения, его преимущество состоит в устранении бликов на отражающих поверхностях за счет создания диффузного освещения.

В светильниках может использоваться сочетание описанных методов регулирования светового потока.


35. Общие требования безопасности к производственным процес­сам и оборудованию.

Создание рациональных санитарно-технических- условий на предприятиях – важная задача, от решения которой зависит здоровье трудовых коллективов, безопасные условия, производительность труда и культура производства в целом.

Общие санитарно-технические требования к производственным помещениям, рабочим местам и зонам, а также к микроклимату изложены в Строительных нормах и правилах (СНиП) и Санитарных нормах проектирования предприятий (СН).

Площадку для размещения предприятий (территория) выбирают, исходя из генеральных планировок развития населенных пунктов. Размеры площадки определяют в соответствии со строительно-санитарными нормами с учетом возможного расширения предприятия на перспективу. Площадка должна быть на сухом, незатопляемом месте с прямым солнечным освещением, естественным проветриванием, иметь относительно ровную поверхность, располагаться вблизи водоисточника с отводом сточных вод. Должны быть обеспечены удобства подхода, подъезда транспортных средств, соблюдены условия охраны труда и техники безопасности, а также противопожарной защиты. Предприятия следует располагать так, чтобы исключить неблагоприятное воздействие одного предприятия на другое.

В селитебной зоне разрешается размещать предприятия, не выделяющие производственные вредности, не производящие шума и с невзрывоогнеопасными технологическими процессами. Предприятия с технологическими процессами, являющимися источниками выделения в окружающую среду вредных веществ, а также источниками повышенных уровней шума, вибрации, ультразвука, электромагнитных волн, радиочастот, статического электричества и ионизирующих излучений, необходимо отделять от зоны заселения санитарно-защитными зонами.

Санитарная классификация производственных предприятий предусматривает размеры санитарно-защитной зоны, которая должна быть благоустроена и озеленена. Зеленые насаждения благоприятно влияют на микроклимат участка, положительно воздействуют на организм человека и его нервную систему. Одновременно необходимо проводить озеленение помещений (интерьеров рабочих помещений, цехов, торговых залов, офисов и др.). Озеленение имеет большое санитарно-гигиеническое и эстетическое значение, так как улучшает состав воздуха, снижает температуру в жаркое время года, повышает влажность. Запах, цвет, шелест листьев благоприятно влияют на трудоспособность человека.

Важное значение имеют санитарные разрывы между зданиями. Если здания освещаются через оконные проемы, то санитарные разрывы должны быть не менее наибольшей высоты от уровня земли до карниза противостоящего здания. От открытых складов строительных материалов, топлива или других пылящих товаров до производственных и вспомогательных зданий и помещений санитарные разрывы должны быть не менее 20 м.

На предприятиях согласно установленным правилам должны быть оборудованные места для сбора отбросов, отходов и мусора. Их размещение и устройство согласовывают с местными органами санитарно-эпидемиологической службы.

Объемно-планировочные и конструктивные решения производственных зданий и сооружений должны отвечать требованиям СНиП.

Объем производственных помещений на одного работника должен составлять не менее 15 м3, площадь – не менее 4,5 м2, высота – не менее 3,2 м. Производственные помещения должны содержаться в надлежащей чистоте.

На предприятиях со значительным выделением пыли уборку помещений следует проводить при помощи пылесосных установок или путем гидросмыва.

Помещения с тепловыделениями (более 20 ккал/(м3 • с)), а также производства с большими выделениями вредных газов, паров и пыли следует располагать у наружных стен зданий и сооружений. В многоэтажных зданиях эти производства следует размещать в верхних этажах и оснащать приточно-вытяжной вентиляцией.

В отапливаемых производственных и вспомогательных помещениях, за исключением особо сырых помещений, не допускается образование конденсата на внутренних поверхностях наружных ограждений. Поэтому стены в таких помещениях покрывают защитно-отделочным пароизоляционным слоем.

Отделка стен должна быть прочной, гигиеничной, экономичной в эксплуатации и отвечать эстетическим требованиям. Рекомендуется применять отделочные элементы заводского изготовления: панели, щиты и плиты различной формы и цвета, выполненные из современных искусственных строительных материалов; панели стен в помещениях для приемки, хранения и подготовки к продаже продовольственных товаров, а также в моечных и душевых должны быть облицованы водоустойчивыми синтетическими материалами, глазурованной плиткой или окрашены масляными либо водоустойчивыми синтетическими красками на высоту не менее 1,8 м.

Полы в производственных помещениях следует делать из материалов, обеспечивающих удобную очистку их и отвечающих эксплуатационным требованиям для данного производства.

Конструкции полов и верхних покрытий выбирают с учетом технологического процесса, выполняемого в отдельных видах помещений. Наиболее распространенными являются цементобетонные, асфальтобетонные, асфальтовые, плиточные и деревянные полы.

В торговых залах магазинов полы рекомендуют покрывать плиткой. Эти полы гигиеничны, легко моются и водопроницаемы. В местах работы контролеров-кассиров, продавцов и других работников торговых залов устраивают деревянные дощатые настилы, настилы из толстых ковровых дорожек или линолеумные дорожки на матерчатой основе.

В торговых залах, расположенных на втором этаже, можно применять деревянные дощатые и паркетные полы. В административно-бытовых помещениях полы должны быть деревянные, дощатые с масляной покраской или паркетные.

Как правило, на предприятиях должны быть вспомогательные санитарно-бытовые помещения (гардеробные, умывальные, туалеты, душевые, курительные, пункты питания, комнаты отдыха, здравпункты, комнаты личной гигиены женщин и др.). Состав этих помещений, размеры и оборудование зависят от санитарной характеристики производственных процессов, численности работников, а также других факторов и определены в СНиП.

Важное значение для охраны труда работников предприятий имеет правильная планировка и устройство выходов, проходов, лестниц и площадок. Они должны отвечать строительным, эксплуатационным, санитарно-техническим и противопожарным требованиям.

Рациональное размещение технологического оборудования внутри помещений влияет на организацию технологических процессов, повышение производительности труда и его охраны. Размещение оборудования должно быть удобным и безопасным в эксплуатации.

Большое значение для охраны труда имеет водоснабжение предприятий. Оно должно обеспечить потребность предприятия в питьевой воде и для хозяйственно-гигиенических, производственных и противопожарных целей. Различают два вида водоснабжения: централизованное и децентрализованное. При централизованном водоснабжении вода подается по трубопроводам общего пользования, а при децентрализованном – поступает из местных источников (колодцев, родников, водоемов).

Выбор источников хозяйственно-питьевого водоснабжения необходимо согласовывать с местными администрациями и местными органами санитарно-эпидемиологической службы. Качество воды должно отвечать требованиям ГОСТа на питьевую воду. Применение сырой воды для питья допускается только с разрешения органов санитарно-эпидемиологической службы.

Все предприятия, согласно санитарным правилам и нормам, должны иметь канализационные сооружения, предназначенные для приема, удаления и обезвреживания сточных вод, а также отведения их на определенные участки. На предприятиях, не имеющих канализацию, устраивают дворовые туалеты и бетонные ямы, которые сооружают в соответствии с правилами безопасности их эксплуатации и санитарно-гигиенических норм.

В производственных и вспомогательных помещениях освещение, отопление, вентиляция и кондиционирование воздуха обеспечивают оптимальные параметры воздушной среды (производственного микроклимата), способствующие сохранению здоровья человека и повышению его трудоспособности.

Температура воздуха в производственных помещениях в зависимости от тяжести работ в холодный и переходный периоды года должна быть от 14 до 21°С, в теплый период – от 17 до 25°С. Относительная влажность – в пределах 60–70%, скорость движения воздуха – не более 0,2–0,5 м/с. В теплый период года температура воздуха в помещениях не должна быть выше наружной более чем на 3–5°С, максимальная – 28°С, а скорость движения воздуха – до 1 м/с.

Комплексным изучением производственных условий, влиянием их на организм человека, а также разработкой мероприятий по их улучшению и внедрению занимаются службы гигиены труда и производственной санитарии.

Составная часть гигиены труда – это физиология труда, изучающая физиологические процессы в организме человека, связанные с его трудовой деятельностью. Физиология труда ставит своей целью найти рациональную с физиологической точки зрения организацию труда, при которой снижается утомляемость человека, повышается работоспособность и производительность труда.

Совершенствование условий труда на предприятиях осуществляется за счет рационализации технологических процессов, внедрения современной техники, выявления и устранения вредных факторов, а также проведения профилактических и защитных мероприятий.


47. Назначение и принцип действия защитного отключения. При­ведите перечень применяемых схем отключения и опишите их достоинства и недостатки.

УЗО (устройство защитного отключения) – современное устройство, реагирующее на дифференциальный ток, наряду с устройствами защиты от сверхтока, относится к дополнительным видам защиты.

Устройство защитного отключения предназначено для защиты человека от поражения электрическим током при неисправностях электрооборудования или при контакте с находящимися под напряжением частями электроустановки, а также для предотвращения возгораний и пожаров, вызванных токами утечки и замыкания на землю, возникающего вследствие длительного протекания токов утечки и развивающихся из них токов короткого замыкания.

При малых токах замыкания, снижении уровня изоляции, а также при обрыве нулевого защитного проводника зануление недостаточно эффективно, поэтому в этих случаях УЗО является единственным средством защиты человека от электропоражения. Эти функции не свойственны обычным автоматическим выключателям, реагирующим лишь на перегрузку или короткое замыкание.

Ощущения при поражении человека электрическим током

 

ток через тело

ощущение

результат

0,5 мА

Не ощущается. Слабые ощущения языком, кончиками пальцев, через рану.

Безопасно

3 мА

Ощущение, близкое к муравьиному укусу

Безопасно

15 мА

При прикосновении к проводнику, невозможность отпустить его

Неприятно, но не опасно

40 мА

Судороги тела, судороги диаграфмы

Опасность удушья в течение нескольких минут

80 мА

Вибрация желудочка сердца

Очень опасно. Приводит к достаточно быстрой смерти

 

          В основе действия защитного отключения, как электрозащитного средства, лежит принцип ограничения (за счет быстрого отключения) продолжительности протекания тока через тело человека при непреднамеренном прикосновении его к элементам электроустановки, находящимся под напряжением.

Из всех известных электрозащитных средств УЗО является единственным, обеспечивающим защиту человека от поражения электрическим током при прямом прикосновении к одной из токоведущих частей.

Особенностями УЗО является высокая надежность, простота монтажа и небольшие размеры. Использование таких устройств позволяет достигнуть высокой степени защиты.

Как правило, ассортимент производимых УЗО (устройств защитного отключения) представлен следующими типами:

- УЗО функционально не зависящего от напряжения сети (электромеханическое): 10мА, 30мА, 100мА, 300мА в двух и четырехполюсном исполнении.

- УЗО функционально зависящего от напряжения сети (электронное) в двух и четырех полюсном исполнении.

Применение приборов по типу установки делится на:

- 10мА в сантехнических помещениях с высокой влажностью;

- 30мА в остальных помещениях, где не требуется прибор с высокой степенью чувствительности к току утечки;

- 100 и 300мА являются противопожарными приборами.

По своим условиям функционирования УЗО подразделяются на следующие типы: АС, А, В, S, G.

·                 УЗО типа АС – устройство защитного отключения, реагирующее на переменный синусоидальный дифференциальный ток, возникающий внезапно, либо медленно возрастающий;

·                 УЗО типа А – устройство защитного отключения, реагирующее на переменный синусоидальный дифференциальный ток и пульсирующий постоянный дифференциальный ток, возникающие внезапно, либо медленно возрастающие;

·                 УЗО типа В – устройство защитного отключения, реагирующее на переменный, постоянный и выпрямленный дифференциальные токи;

·                 УЗО типа S – устройство защитного отключения, селективное (с выдержкой времени отключения);

·                 УЗО типа G – то же, что и типа S, но с меньшей выдержкой времени.

При рассмотрении конструкции УЗО принципиальное значение имеет разделение устройств по способу технической реализации на следующие два типа:

·                 УЗО, функционально не зависящие от напряжения питания (электромеханические). Источником энергии, необходимой для функционирования – выполнения защитных функций, включая операцию отключения, является для устройства сам сигнал – дифференциальный ток, на который оно реагирует;

·                 УЗО, функционально зависящие от напряжения питания (электронные). Их механизм для выполнения операции отключения нуждается в энергии, получаемой либо от контролируемой сети, либо от внешнего источника. Применение устройств, функционально зависящих от напряжения питания, более ограничено в силу их меньшей надежности, подверженности воздействию внешних факторов и др.

Однако основной причиной меньшего распространения таких устройств является их неработоспособность при часто встречающейся и наиболее опасной по условиям вероятности электропоражения неисправности электроустановки, а именно – при обрыве нулевого проводника в цепи до УЗО по направлению к источнику питания. В этом случае «электронное»  УЗО, не имея питания, не функционирует, а на электроустановку по фазному проводнику выносится опасный для жизни человека потенциал.

Стандарт МЭК 364-5-53 «Электроустановки зданий. Часть 5. Выбор и монтаж электрооборудования. Коммутационная аппаратура и аппаратура управления»  определяет следующие требования к УЗО, функционально зависящим от напряжения питания:

531.2.2. Выбор устройств (УЗО) с учетом их функциональной зависимости от напряжения питания;

531.2.2.1. Устройства защиты (УЗО), управляемые остаточным током, могут иметь или не иметь вспомогательный источник питания, принимая во внимание требования пункта 531.2.2.2.;

531.2.2.2. Применение устройств защиты, управляемых остаточным током, со вспомогательным источником питания, не отключающего автоматически защищаемую цепь в случае отказа вспомогательного источника, разрешается только при выполнении одного из двух условий:  защита от непрямого контакта по п. 413.1 обеспечивается даже в случае отказа вспомогательного источника; устройства монтируются в установках, управляемых, испытываемых и проверяемых обученным (ВА4) или высококвалифицированным (ВА5) персоналом.

Рис. «Электронное»  УЗО с функцией отключения сети: 1 – дифференциальный трансформатор тока; 2 – электронный усилитель; 3 – цепь теста; 4 – удерживающее реле; 5 – блок управления; Н – нагрузка; Т – кнопка «Тест»


         В конструкции «электронных»  УЗО, производимых в США, Японии, Южной Корее и в некоторых европейских странах, уже заложена функция отключения от сети защищаемой электроустановки при исчезновении напряжения питания. Эта функция конструктивно реализуется с помощью электромагнитного реле, работающего в режиме самоудерживания. Силовые контакты реле находятся во включенном положении только при протекании тока по его обмотке (аналогично магнитному пускателю).

При исчезновении напряжения на вводных зажимах устройства якорь реле отпадает, при этом силовые контакты размыкаются, защищаемая электроустановка обесточивается. Подобная конструкция УЗО обеспечивает гарантированную защиту от поражения человека в электроустановке и в случае обрыва нулевого проводника.

В США применяются в основном УЗО, встроенные в розеточные блоки. На одном объекте, например, небольшой квартире устанавливается по 10-15 устройств. Розетки, не оборудованные УЗО, обязательно запитываются шлейфом от розеточных блоков с УЗО.

К сожалению, в нашей стране, в отличие от общепринятой в мировой практике концепции, целым рядом предприятий производятся электронные УЗО на базе типового автоматического выключателя.

Эти устройства функционируют следующим образом.
При возникновении дифференциального тока с модуля защитного отключения, содержащего дифференциальный трансформатор и электронный усилитель, на скомпонованный с модулем автоматический выключатель подается либо электрический сигнал (на модифицированную катушку токовой отсечки), либо с якоря промежуточного реле через поводок осуществляется механическое воздействие на механизм свободного расцепления выключателя.

В результате автоматический выключатель срабатывает и отключает защищаемую цепь от сети. При отсутствии напряжения на входных зажимах такого устройства (например, при обрыве нулевого проводника до УЗО), во-первых, из-за отсутствия питания не функционирует электронный усилитель, во-вторых, отсутствует энергия, необходимая для срабатывания автоматического выключателя.

Как результат, в случае обрыва нулевого проводника в питающей сети устройство неработоспособно и не защищает контролируемую цепь. При этом в данном аварийном режиме (при обрыве нулевого проводника) опасность поражения человека электрическим током усугубляется, так как по фазному проводнику через неразомкнутые контакты автоматического выключателя в электроустановку выносится потенциал.

Человек, полагая, что в сети напряжения нет, теряет обычную бдительность по отношению к электрическому напряжению и часто предпринимает попытки устранить неисправность и восстановить электропитание – открывает электрический щит, проверяет контакты, – подвергая тем самым свою жизнь смертельной опасности.

В европейских странах – Германии, Австрии, Франции электротехнические нормы допускают применение УЗО только первого типа – не зависящих от напряжения питания. УЗО второго типа разрешено применять в цепях, защищаемых электромеханическими УЗО, только в качестве дополнительной защиты для конечных потребителей, например, для электроинструмента, нестационарных электроприемников и т.д.

Электромеханические УЗО производят ведущие европейские фирмы – Siemens, ABB, GE Power, ABL Sursum, Hager, Kopp, AEG, Baco, Legrand, Merlin-Gerin и др.

К сожалению, на отечественном рынке появилось огромное количество самых разнообразных подделок УЗО и устройств не установленного происхождения, имеющих часто привлекательный внешний вид, но по техническим параметрам не выдерживающих даже приемосдаточных испытаний.

Применение подобных устройств, учитывая особое назначение УЗО – защиту жизни и имущества человека, является совершенно недопустимым. Поэтому, при приобретении УЗО необходимо обратить особое внимание на наличие сопроводительной технической документации, в том числе обязательно двух сертификатов – сертификата соответствия и сертификата пожарной безопасности.

Существует класс приборов – УЗО со встроенной защитой от сверхтоков (RCBO), так называемые «комбинированные»  УЗО.

Рис. Устройство УЗО со встроенной защитой от сверхтоков:

1 – катушка токовой отсечки; 2 – биметаллическая пластина; 3 – дифференциальный трансформатор тока; 4 – магнитоэлектрический расцепитель, реагирующий на дифференциальный ток; 5 – тестовый резистор; 6 – силовые контакты; Н – нагрузка; Т – кнопка «Тест»


          Практически все фирмы-производители УЗО имеют в своей производственной программе УЗО со встроенной защитой от сверхтоков. Как правило, их доля в общем объеме выпускаемых устройств защитного отключения не превышает одного-двух процентов. Это объясняется довольно ограниченной областью их применения – незначительная, неизменяемая нагрузка, автономный электроприемник и т.п.

Показательным примером является освещение рекламных щитов, установленных на уличных павильонах остановок общественного транспорта, где питание двух-трех люминесцентных ламп осуществляется через комбинированное УЗО с номинальным рабочим током 6А и номинальным отключающим дифференциальным током 30 мА.

Конструктивной особенностью УЗО со встроенной защитой от сверхтоков является то, что механизм размыкания силовых контактов запускается при воздействии на него любого из трех элементов – катушки с сердечником токовой отсечки, реагирующей на ток короткого замыкания, биметаллической пластины, реагирующей на токи перегрузки и магнитоэлектрического расцепителя, реагирующего на дифференциальный ток.

Применение УЗО со встроенной защитой от сверхтоков, целесообразно лишь в обоснованных случаях, например, для одиночных потребителей электроэнергии.


58. Стационарные установки для тушения водой, пеной и углекис­лым газом. Приведите схемы их устройства.

Стационарные установки предназначены для тушения пожаров в начальной стадии их возникновения; они запускаются автоматически или с помощью дистанционного управления. Названные установки заправляются: водой, пеной, негорючими газами, порошковыми составами или паром.

          К автоматическим установкам водяного пожаротушения относятся спринклерные и дренчерные установки.

Спринклерные установки включаются автоматически при повышении температуры среды внутри помещения до заданного предела. Датчиками этих систем являются спринклеры, легкоплавкий замок которых открывается при повышении температуры. Спринклерные установки имеют основной и автоматический (вспомогательный) водопитатели. Автоматический водопитатель (водонапорный бак, гидропневматическая установка, водопровод и др.) должен подавать воду до включения основного водопитателя (насосных станций).

Водяные спринклерные системы используют в помещениях с температурой воздуха не ниже 4° С; в неотапливаемых помещениях, в которых на протяжении не менее восьми месяцев года поддерживается температура воздуха 4° С, трубопроводы заполняют до пускового устройства антифризом.

Эти установки представляют собой (рис.) разветвленные трубопроводы, размещенные под потолком помещения, в которые вмонтированы спринклеры (при условии орошения одним спринклером от 9 до 12 м   площади пола).

Выходное отверстие в спринклерной головке в обычное время закрыто легкоплавким замком. При повышении температуры замок выбрасывается и вода разбрызгивается, ударяясь о дефлектор. В спринклерных головках совмещены датчики и приспособления для выбрасывания воды. В спринклерных установках вскрываются лишь те головки, которые оказались в зоне высокой температуры пожара. Спринклерные головки обладают сравнительно большой инерционностью – они вскрываются через 2...3 мин с момента повышения температуры.

Дренчерные установки применяют в помещениях с высокой пожарной опасностью. При горении ЛВЖ эти установки локализуют пожар и предотвращают распространение огня на соседнее оборудование. Все трубопроводы этих установок постоянно заполнены водой до штуцеров дренчеров на распределительных трубопроводах.

Дренчерные установки включаются в действие как автоматически при срабатывании пожарных извещателей, так и вручную. Их используют для одновременного орошения расчетной площади отдельных частей строения, создания водяных завес в проемах дверей, окон, орошения элементов технологического оборудования. Принципиальная схема дренчерной установки группового действия показана на рис.

Быстродействующие установки локального действия по конструктивному оформлению напоминают дренчерные системы. Они предназначены для защиты участков технологических процессов, где возможны

воспламенения, взрывы и другие аварийные ситуации, для ликвидации которых нельзя использовать спринклерно-дренчерные установки. Эффект тушения достигается мгновенной подачей большого количества воды на очаг пожара в течение короткого промежутка времени.

Установки тушения распыленной водой применяют для пожарной защиты производств, в которых обращаются ГЖ и масла. Они аналогичны дренчерным установкам, однако для создания распыленных водяных струй в них имеются специальные оросители, конструкция которых отличается от конструкции обычных дренчеров.

Установки водопенноготушения. Для тушения пожаров пеной применяют передвижные средства (ручные пенные стволы, пеноподьемники, пеногенераторы и др.), полу стационарные (пенокамеры), стационарные генераторы и автоматические стационарные установки.

Схема установки для получения воздушно-механической пены показана на рис. Вода под напором поступает по трубопроводу 1 от водоисточника в дозатор 4, который автоматически (через трубопровод 3) подсасывает определенное количество пенообразователя из емкости 2. Образующийся водный раствор пенообразователя поступает по трубопроводу 5 в генератор пены 6. В генераторе пены эмульсия, проходя через распылитель и выходя через его сопла в распыленном состоянии, попадает на металлическую сетку, насыщается воздухом, что и дает обильное ценообразование. Обычный расход пенообразователя составляет 46 % от объема воды.

 Стационарные установки для тушения пожара воздушно-механической пеной бывают поверхностного, объемного, локального и комбинированного действия, В установках поверхностного действия (спринклерных и дренчерных) используют пену низкой кратности.

Установка пенного тушения локального действия реагирует на пожар и автоматически включает подачу раствора пенообразователя в генераторы, где образуется пена для тушения пожара на поверхности технологического аппарата и на полу.

Установки для тушения пожаров порошковыми составами. Стационарные установки применяют на технологических аппаратах, в производственных зданиях и сооружениях. Установки могут иметь различные схемы и выполняться с электрическим и пневмомеханическим пуском.

На рис. показана схема установки автоматического тушения пожаров порошковыми составами с пневмомеханической системой пуска. Она приводится в действие при срабатывании побудительно-пусковой батареи после включения пожарного извещателя. Под действием сжатого газа поршень привода опускается вниз, натягивает трос и открывает головки-затворы, которые включают подачу сжатого газа через редуктор в сосуд с порошковым составом. Когда давление в сосуде достигает заданного предела, порошковый состав через трубопровод и распылители подается на очаг горения. Передвижные порошковые установки располагают в кузове автомашины или на платформе прицепа.

Порошковые огнетушители переносного типа ОПС применяют для тушения щелочных металлов (при площади горения до 4 м ): до 6 кг лития, до 10 кг калия и до 15 кг натрия или магниевой стружки. Порошковый состав подается из баллона емкостью 10 л через шланг и удлинитель под давлением сжатого воздуха, который хранится в дополнительном баллончике емкостью 0,7 л.

 



0
рублей


© Магазин контрольных, курсовых и дипломных работ, 2008-2019 гг.

e-mail: studentshopadm@ya.ru

об АВТОРЕ работ

 

Вступи в группу https://vk.com/pravostudentshop

«Решаю задачи по праву на studentshop.ru»

Решение задач по юриспруденции [праву] от 50 р.

Опыт решения задач по юриспруденции 20 лет!