Вступи в группу https://vk.com/pravostudentshop

«Решаю задачи по праву на studentshop.ru»

Опыт решения задач по юриспруденции более 20 лет!

 

 

 

 


«Ответы на вопросы материаловедению»

/ Материаловедение
Конспект, 

Оглавление

 

1. Борирование

Борирование – насыщение поверхности металлов и сплавов бором с целью повышения твердости, износостойкости, коррозионной стойкости. Борированию подвергают стали перлитного, ферритного и аустенитного классов, тугоплавкие металлы и никелевые сплавы. При борировании железа упрочненный слой состоит из ромбического борида FeB и тетрагонального борида Fe2B, образующих столбчатые кристаллы. Под слоем боридов располагается переходный слой из твердого раствора бора в α-железе. При нагреве бориды устойчивы: FeB – до 800°С, Fe2B – до 1000°С. Установлено, что углерод сталей полностью вытесняется из зоны боридов вглубь и, в зависимости от легирующих элементов в стали, образует переходную зону. Хром и марганец при борировании диффундируют в зону боридов, образуя (Fe, Mn, Сг)В и (Fe, Мп, Сг)2В, которые по строению аналогичны боридам FeB и Fe2B. Кремний при борировании диффундирует из зоны боридов вглубь, обогащая зону α-фазы, а при большом количестве кремния в переходной зоне могут образоваться графит и феррит. В этом случае будет наблюдаться скалывание боридного слоя. Вообще боридный слой хрупкий. Наибольшей хрупкостью обладает борид FeB (микротвердость 2000 H50) по сравнению с Fe2B (микротвердость 1450 Н30). При борировании инструментальных сталей Р!8, Р9, ХВГ микротвердость достигает 2450–3435 Н50. Высокая микротвердость боридного слоя сохраняется до 700°С, что позволяет применять борирование для повышения износостойкости деталей, работающих при высоких температурах.

Борированные стали обладают высокой коррозионной стойкостью в водных растворах соляной, серной и фосфорной кислот, причем при одинаковой толщине слоя однофазные боридные слои имеют большую кислотостойкость, чем двухфазные. В азотной кислоте боридные слои неустойчивы, однако скорость разрушения борированных сталей в 1,5–5 раз ниже, чем неборированных. Борированные слои на углеродистых сталях устойчивы к воздействию кипящих водных растворов NaOH и КОН, а также расплавов цинка, свинца, олова, кадмия.

 

2. Цементуемые стали

К данной группе сталей относятся низко – и среднелегированные стали (20Х, 15ХФ, 25ХГТ, 12ХНЗА и др.) с содержанием углерода 0,1–0,3%, обеспечивающие после химико-термической обработки, закалки и низкого отпуска высокую поверхностную твердость (HRC 58–62) при вязкой, но достаточно прочной сердцевине (σв = 700-1500 МГТа, δ = 10-12%, KCU = 0,6-1,0 МДж/м2, HRC 35–45). Эти стали используют для изготовления деталей машин и приборов (кулачков, зубчатых колес и др.), испытывающих переменные и ударные нагрузки и одновременно подверженных износу.

Карбидо- и нитридообразующие элементы (такие, как Сr, Мn, Мо и др.) способствуют повышению прокаливаемости, поверхностной твердости, износостойкости и контактной выносливости. Никель повышают вязкость сердцевины и диффузионного слоя и снижает порог хладноломкости. Легирование стали ванадием, титаном, алюминием, ниобием приводит к образованию дисперсных нитридов (VN, TiN, AIM), карбидов (TiC, VQ или карбонитридов, например, V(N,C), затормаживающих рост зерна аустенита и таким образом способствующих его измельчению. Уменьшение же зерна способствует снижению хрупкости и повышению ударной вязкости стали, что весьма важно при работе в условиях действия динамических и знакопеременных нагрузок. Цементуемые (нитроцементуемые) легированные стали по механическим свойствам подразделяют на две группы: стали средней прочности с пределом текучести менее 700 МГТа (15Х, 15ХФ) и повышенной прочности с пределом текучести σ0,2= 700–1100 МПа (12Х2Н4А, 1SX2H4MA и др.).

Хромистые (15Х, 20Х) и хромованадиевые (15ХФ, содержит 0,15% V) стали цементуются на глубину до 1,5 мм. Легирование ванадием уменьшает склонность стали к перегреву. После закалки (880°С, вода, масло) и последующего отпуска (180°С, воздух, масло) стали имеют следующие свойства: σn = 690–800 МПа, δ = 11–12%, KCU = 0,62 МДж/м3.

Хромомарганцевые стали (18ХГТ, 25ХГТ), широко применяемые в автомобилестроении, содержат по 1% хрома и марганца (дешевого заменителя никеля в стали), а также 0,06% титана. Их недостатком является склонность к внутреннему окислению при газовой цементации, что приводит к снижению твердости слоя и предела выносливости. Этот недостаток устраняется легированием стали молибденом (25ХГМ). Для работы в условиях изнашивания используют сталь 20ХГР, легированную бором (0,001–0,005%). Бор повышает прокаливаемость и прочность стали, но снижает ее вязкость и пластичность. Дополнительное введение в сталь 1% никеля (20ХГНР) приводит к увеличению ее пластичности, вязкости и прокаливаемости.

В хромоникелевых (12ХНЗА, 12Х2Н4А, 20ХНЗА и др.) при закалке (в масле) н сердцевине формируется структура нижнего бейнита либо низкоуглеродистого мартенсита. Такая структура обеспечивает сочетание высокой прочности и вязкости стали (σ в = 950–1300МПа, δ = 9-11 %, KCU = 0,8–0,9 МДж/ма). Эти стали применяют для крупных деталей ответственного назначения.

Хромоникельмолибденовая (вольфрамовая) сталь 18Х2Н4МА (18Х2Н4ВА) относится к мартенситному классу и закаливается на воздухе, что способствует уменьшению коробления. Легирование хромоникелевых сталей W или Мо дополнительно повышает их прокаливаемость. Причем Мо существенно повышает прокаливаемость цсмснтованного слоя, в то время как хром и марганец увеличивают прежде всего прокаливаемость сердцевины.

В цементованном состоянии данную сталь применяют для изготовления зубчатых колес авиационных двигателей, судовых редукторов и других крупных деталей особо ответственного назначения. Эту сталь используют также как улучшаемую при изготовлении деталей, подверженных большим статическим и ударным нагрузкам.

 

3. Испытание на растяжение металлов

Испытания на растяжение позволяют получить достаточно полную информацию о механических свойствах материала. Для этого применяют специальные образцы, имеющие в поперечном сечении форму круга (цилиндрические образцы) или прямоугольника (плоские образцы).

На рис. 2.6 представлена схема цилиндрического образца на различных стадиях растяжения. Согласно ГОСТ 1497–84, геометрические параметры образцов на растяжение должны отвечать следующим соотношениям: (где lо – начальная расчетная длина образца, f0 начальная площадь поперечного сечения расчетной части образца). Для цилиндрических образцов отношение расчетной начальной длины l0 к начальному диаметру d0, т. е. l0/d0, называют кратностью образца, от которой зависит его конечное относительное удлинение. На практике применяют образцы с кратностью 2,5, 5 и 10. Самым распространенным является образец с кратностью 5.

Перед испытанием образец закрепляют в вертикальном положении в захватах испытательной машины.

На рис. 2.7 представлена принципиальная схема типичной испытательной машины, основными элементами которой являются: приводной нагружащий механизм, обеспечивающий плавное нагружение образца вплоть до его разрыва; силоизмерительное устройство для измерения силы сопротивления образца растяжению; механизм для автоматической записи диаграммы растяжения.

В процессе испытания диаграммный механизм непрерывно регистрирует так называемую первичную (машинную) диаграмму растяжения в координатах нагрузка (Р) – абсолютное удлинение образца (l) (рис. 2.8).

На диаграмме растяжения пластичных металлических материалов можно выделить три характерных участка: участок ОА – прямолинейный, соответствующий упругой деформации; участок АВ – криволинейный, соответствующий упругопластической деформации при возрастании нагрузки; участок ВС – также криволинейный, соответствующий упругопластической деформации при снижении нагрузки. В точке С происходит окончательное разрушение образца с разделением его на две части.

В области упругой деформации (участок ОА) зависимость между нагрузкой Р и абсолютным упругим удлинением образца l пропорциональна и известна под названием закона Гука:

P=kl, где  k=EF0/l0  – коэффициент, зависящий от геометрии образца (площади поперечного сечения F0 и длины l0) и свойств материала (параметр Е).

Параметр Е (МПа) называют модулем нормальной упругости, характеризующим жесткость материала, которая связана с силами межатомного взаимодействия. Чем выше E, тем материал жестче и тем меньшую упругую деформацию вызывает одна и та же нагрузка. Закон Гука чаще представляют в следующем виде:

 где σ=P/F0 – нормальное напряжение; δ=l/l0 – относительная упругая деформация.

Наряду с модулем нормальной упругости Е существует модуль сдвига (модуль касательной упругости) G, который связывает пропорциональной зависимостью касательное напряжение τ с углом сдвига (относительным сдвигом) γ:

τ = Gγ.

Еще одним важным параметром упругих свойств материалов является коэффициент Пуассона μ, равный отношению относительной поперечной деформации (∆d/d0) к относительной продольной деформации (∆l/l0). Этот коэффициент характеризует стремление материала сохранять а процессе упругой деформации свой первоначальный объем.

От коэффициента Пуассона μ зависит соотношение между Е и G:

E/G = 2(l +μ).                                                                                            (2.1)

Как следует из уравнения (2.1), Е больше G, так как для смещения атомов отрывом требуется большее усилие, чем сдвигом.

Значения модуля нормальной упругости Е, модуля сдвига G к коэффициента Пуассона μ для некоторых материалов приведены в табл. 1.

Таблица  1

Значения модуля нормальной упругости Ж, модуля сдвига G и коэффициента Пуассона μ для некоторых материалов

 

Материал 

E, МПа 

G, МПа 

μ

Сталь 20 

210 000 

82031

0,28

Медь листовая

113000

42164

0,34

Латунь

97000

34155

0,42

Цинк

82000

32283

0,27

Алюминий

68000

25564

0,33

Свинец

17000

5862

0,45

 

При переходе от упругой деформации к упругопластической для некоторых металлических материалов на машинной диаграмме растяжения может проявляться небольшой горизонтальный участок, который называют площадкой текучести АA' (см. рис. 2.8, а).

На этой стадии деформации в действие включаются новые источники дислокаций, происходит их спонтанное размножение и лавинообразное распространение по плоскостям скольжения. Макроскопическим проявлением этих процессов является образование на рабочей поверхности образца узких полос скольжения, получивших название линий Чернова–Людерса. Эти линии располагаются под утлом 45° к продольной оси образца по направлению действия максимальных касательных напряжений и отчетливо видны на его полированной поверхности. Однако многие металлы и сплавы деформируются при растяжении без площадки текучести.

С увеличением упругопластической деформации усилие, с которым сопротивляется образец, растет и достигает в точке В своего максимального значения. Для пластичных материалов в этот момент в наиболее слабом сечении образца образуется локальное сужение (шейка), где при дальнейшем деформировании происходит разрыв образца. На участке ОАВ деформация распределена равномерно по всей длине образца, а на участке ВС деформация практически вся сосредоточена в зоне шейки.

При растяжении определяют следующие показатели прочности и пластичности материалов.

Показатели прочности материалов характеризуются удельной величиной – напряжением, равным отношению нагрузки в характерных точках диаграммы растяжения к площади поперечного сечения образца. Дадим определение наиболее часто используемым показателям прочности материалов.

Предел   текучести   (физический)   τ, МПа) – это наименьшее напряжение, при котором материал деформируется (течет) без заметного изменения нагрузки:

στ=Pτ/F0 где Pτ нагрузка, соответствующая площадке текучести на диаграмме растяжения (см. рис. 2.8, а).

Если на машинной диаграмме растяжения нет площадки текучести (см. рис. 2.8, б), то задаются допуском на остаточную деформацию образца и определяют условный предел текучести.

Условный  предел  текучести (σ02, МПа) – это напряжение, при котором остаточное удлинение достигает 0,2% от начальной расчетной длины образца: σ0,2=P0,2/F0, где P0,2 нагрузка, соответствующая остаточному удлинению l0,2=0,002l0.

Временное сопротивление (предел прочности) (σв, МПа) – это напряжение, соответствующее наибольшей нагрузке Pmax, предшествующей разрыву образца: σв=Pmax/F0.

Истинное сопротивление разрыву (Sk, МПа) – это напряжение, определяемое отношением нагрузки Pk в момент разрыва к площади поперечного сечения образца в месте разрыва Fk: Sk=Pk/Fk , где F Fk=πdk2/4.

Показатели пластичности. Пластичность – одно из важных механических свойств металла, которое в сочетании с высокой прочностью делает его основным конструкционным материалом. Дадим определение наиболее часто используемым показателям пластичности материалов.

Предельное равномерное удлинение (δp, %) – это наибольшее удлинение, до которого образец деформируется равномерно по всей его расчетной длине, или, другими словами, это отношение абсолютного приращения расчетной длины образца lр до нагрузки Рmax к ее первоначальной длине (см. рис. 2.8, а): δp=(∆lр/l0)100=[(lр-l0)/l0]100.

Аналогично предельному равномерному удлинению существует предельное равномерное  сужение (ψр, %): ψp=∆Fр/F0)100=[(F0-Fp)/F0]100, где Fpdp2/4 – площадь поперечного сечения образца, соответствующая Pmax. Из условия постоянства объема образца при растяжении можно получить ψpp/(1+δp).

При разрушении образца на две части определяют конечные показатели пластичности: относительное удлинение и относительное сужение образца после разрыва.

Относительное удлинение после разрыва (δ, %) – это отношение приращения расчетной длины образца после разрыва lk, к ее первоначальной длине: δ=(∆lk/ l0)100=[(lk-l0)/l0]100.

Относительное удлинение после разрыва зависит от соотношения l0 и f0, т. е. от кратности образцов. Чем меньше отношение l0/√ F0 и кратность образца, тем больше δ. Это объясняется влиянием шейки образца, где имеет место сосредоточенное удлинение. Поэтому индекс у δ указывает на кратность образца, например δ2,5, δ510.

Относительное   сужение   после   разрыва (ψ, %) – это отношение уменьшения площади поперечного сечения образца в месте разрыва ∆ Fk к начальной площади поперечного сечения: ψ=(∆Fk/F0)100=[(F0-Fk)/F0]100.

В отличие от конечного относительного удлинения конечное относительное сужение не зависит от соотношения l0 и f0 (кратности образца), так как в последнем случае деформацию оценивают в одном, наиболее узком, сечении образца.

Диаграммы условных и истинных напряжений и деформаций. Протяженность первичных диаграмм растяжения вдоль осей координат Р и l зависит от абсолютных размеров образцов. При постоянной кратности образца чем больше его длина и площадь поперечного сечения, тем выше и протяженнее первичная диаграмма растяжения. Однако если эту диаграмму представить в относительных координатах, то диаграммы для образцов одной кратности, но разных размеров будут одинаковы. Так, если по оси ординат откладывать условные напряжения σ, равные отношению нагрузки Р к начальной площади поперечного сечения F0, а по оси абсцисс – условные удлинения δ, равные отношению абсолютного приращения длины образца l к его начальной длине l0, то диаграмму называют диаграммой условных напряжений и деформаций (или просто условной диаграммой). На рис. 2.9, а схематически представлена условная диаграмма σ–δ. На этой диаграмме отмечены условный предел текучести σ0,2, временное сопротивление σв, конечное условное напряжение σk, условное предельное равномерное удлинение δр и условное относительное удлинение после разрыва δk.

Однако более объективную информацию можно получить, если диаграмму растяжения представить в других координатах: S–ε. Истинное напряжение S определяется как отношение текущей нагрузки Р к текущей площади поперечного сечения F (которое непрерывно уменьшается в процессе растяжения: S=P/F.

Истинное удлинение учитывает непрерывно изменяющуюся длину образца в процессе его растяжения, и поэтому е можно определить как сумму бесконечно малых относительных деформаций dl/l при переменном l:

Диаграмму в координатах S–ε называют диаграммой истинных напряжений и деформаций (или просто истинной диаграммой). На истинной диаграмме, как и на условной, можно найти характерные точки, соответствующие истинному пределу текучести S*0,2, истинному временному сопротивлению Sв, истинному сопротивлению разрыву Sk , а также истинному предельному равномерному удлинению е и истинному конечному удлинению εp, (рис. 2.9, б).

 



0
рублей


© Магазин контрольных, курсовых и дипломных работ, 2008-2024 гг.

e-mail: studentshopadm@ya.ru

об АВТОРЕ работ

 

Вступи в группу https://vk.com/pravostudentshop

«Решаю задачи по праву на studentshop.ru»

Опыт решения задач по юриспруденции более 20 лет!