Вступи в группу https://vk.com/pravostudentshop

«Решаю задачи по праву на studentshop.ru»

Опыт решения задач по юриспруденции более 20 лет!

 

 

 

 


«Ответы на вопросы материаловедению»

/ Материаловедение
Конспект, 

Оглавление

1. Закалка стали

Закалка – это термическая обработка, которая заключается в нагреве стали до температур, превышающих температуру фазовых превращений, выдержке при этой температуре и последующем охлаждении со скоростью, превышающей критическую минимальную скорость охлаждения. Основной целью закалки является получение высокой твердости, упрочнение. В основе закалки лежит аустенитно-мартенситное превращение. 

Оптимальный интервал закалочных температур углеродистой стали представлен на рис.1

 

 

В зависимости от температуры нагрева различают: 

  полную закалку, при которой нагрев осуществляется в однофазную аустенитную область (на 30–50° выше линии GSE). При быстром охлаждении происходит полное превращение аустенита в мартенсит; 

  неполную закалку, при которой нагрев осуществляется в двухфазную область (на 30–50° выше линии PSK, но ниже линии GSE) и при охлаждении формируется в доэвтектоидных сталях феррито-мартенситная, а в заэвтектоидных сталях – мартенсито-цементитная структура. 

На практике полную закалку применяют для доэвтектоидных сталей, неполную для заэвтектоидных сталей. 

Температура нагрева под закалку легированных сталей обычно выше, чем для углеродистых. Диффузионные процессы в легированных сталях протекают медленнее, поэтому для них требуется более длительная выдержка. Нагрев легированных сталей до более высокой температуры и более длительная выдержка не сопровождается ростом зерна, так как легирующие элементы снижают склонность к росту зерна при нагреве. После закалки структура состоит из легированного мартенсита.

Для достижения максимальной твердости при закалке стремятся получать мартенситную структуру. Минимальная скорость охлаждения, необходимая для переохлаждения аустенита до мартенситного превращения, называется критической скоростью заколки. Скорость охлаждения определяется видом охлаждающей среды.

Обычно для закалки используют кипящие жидкости:

  воду;

  водные растворы солей и щелочей;

  масла.

Выбор конкретной закалочной среды определяется видом изделия. Например, воду с температурой 18–25°С используют в основном при закалке деталей простой формы и небольших размеров, выполненных из углеродистой стали. Детали более сложной формы из углеродистых и легированных сталей закаляют в маслах. Для закалки легированных сталей часто используют водные растворы NaCL и NaOH с наиболее высокой охлаждающей способностью. Для некоторых легированных сталей достаточная скорость охлаждения обеспечивается применением спокойного или сжатого воздуха.

Из-за пониженной теплопроводности легированных сталей их нагревают и охлаждают медленнее.

Важными характеристиками стали, необходимыми для назначения технологических режимов закалки, являются закаливаемость и прокаливаемость. Закаливаемость характеризует способность стали к повышению твердости при закалке и зависит главным образом от содержания углерода в стали. Закаливаемость оценивают по твердости поверхностного слоя стального образца после закалки.

Прокаливаемость характеризует способность стали закаливаться на требуемую глубину. Прокаливаемость оценивается по расстоянию от поверхности изделия до слоя, в котором содержится не менее 50% мартенсита. Зависит прокаливаемость от критической скорости охлаждения: чем меньше критическая скорость закалки, тем выше прокаливаемость. На прокаливаемость оказывают влияние химический состав стали, характер закалочной среды, размер и форма изделия и многие другие факторы. Легирование стали способствует увеличению ее прокаливаемости. Прокаливаемость деталей из среднеуглеродистой стали при закалке в масле ниже, чем при закалке в воде. Прокаливаемость резко уменьшается с увеличением размеров заготовки.

При сквозной прокаливаемости по сечению изделия механические свойства одинаковы, при несквозной прокаливаемости в сердцевине наблюдается снижение прочности, пластичности и вязкости металла. Прокаливаемость является важной характеристикой стали и при выборе марки стали рассматривается наряду с ее механическими свойствами, технологичностью и себестоимостью.

Способы закалки стали:

закалка в одном охладителе, при которой нагретая деталь погружается в охлаждающую жидкость и остается там до полного охлаждения. Наиболее простой способ. Недостаток – возникновение значительных внутренних напряжений. Закалочная среда – вода для углеродистых сталей сечением более 5 мм, масло – для деталей меньших размеров и легированных сталей;

закалка в двух средах, при которой деталь до 300–400°С охлаждают в воде, а затем переносят в масло. Применяют для уменьшения внутренних напряжений при термообработке изделий из инструментальных высокоуглеродистых сталей. Недостаток – трудность регулирования выдержки деталей в первой среде;

ступенчатая закалка, при которой деталь быстро охлаждается погружением в соляную ванну с температурой, немного превышающей температуру мартенситного превращения, выдерживается до достижения одинаковой температуры по всему сечению, а затем охлаждается на воздухе. Медленное охлаждение на воздухе снижает внутренние напряжения и возможность коробления. Недостаток – ограничение размера деталей;

изотермическая закалка, при которой деталь выдерживается в соляной ванне до окончания изотермического превращения аустенита. Применяют для конструкционных легированных сталей. При такой закалке обеспечивается достаточно высокая твердость при сохранении повышенной пластичности и вязкости;

закалка с самоотпуском, при которой в закалочной среде охлаждают только часть изделия, а теплота, сохранившаяся в остальной части детали после извлечения из среды, вызывает отпуск охлажденной части. Применяют для термообработки ударного инструмента типа зубил, молотков, которые должны сочетать высокую твердость и вязкость; обработка холодом состоит в продолжении охлаждения закаленной стали ниже 0°С до температур конца мартенситного превращения (обычно не ниже –75°С). В результате обработки холодом повышается твердость и стабилизуются размеры деталей. Наиболее распространенной является охлаждающая среда смеси ацетона с углекислотой.

 


2. Электротехнические материалы

    В качестве электроизоляционных материалов могут применяться только такие материалы, которые не проводят электрический ток или проводят его очень слабо. Они должны также обладать необходимой механической прочностью, тепло- и влагостойкостью. Такими материалами являются древесные материалы, пластмассы, а также резины, электроизоляционные лаки, асбест, фибра, слоистые пластики.

Кроме того, для этих целей используются изоляционная лента, прессшпан, слюда и др.

Бумага – листовой материал, изготовленный из растительных волокон и целлюлозы. Целлюлоза – растительные волокна, очищенные от смол и других компонентов. Картон – специально обработанная толстая бумага (толщиной 0,25–3 мм). В зависимости от способа обработки картон приобретает масло- и бензостойкость, электро- и термоизоляционность. Бумагу и картон применяют как электроизоляционный, прокладочный и уплотнительный материал.

Фибра – разновидность бумажного материала, изготовляют ее из бумаги, пропитанной раствором хлористого цинка. Отличается высокой прочностью и хорошо поддается механической обработке, масло- и бензостойка. Недостаток фибры – значительная гигроскопичность (влагопоглощаемость), поэтому при увлажнении она деформируется. Фибры применяются для изготовления шайб, прокладок и втулок.

Прессшпан – выпускается в виде листов твердого картона. Его получают из бумажной массы, пропитанной льняным маслом. Он применяется для изоляции в электрических машинах.

Слюда – представляет собой тугоплавкий слоистый минерал, легко расщепляющийся на тонкие прозрачные листочки. Слюда обладает высокими электроизоляционными свойствами и применяется как диэлектрик в конденсаторах, коллекторах, электрогенераторах и стартерах, в электронагревательных приборах.

Листочки слюды, склеенные глифталевой смолой под горячим прессованием, называют миканитом.

Изоляционные лаки (№ 458, 460, 447, 13, 1154 и др.) представляют собой смесь асфальта или битума, растительного масла, органического растворителя и сиккатива. Они применяются для изоляции обмоток полюсных катушек генераторов и стартеров, а также для защиты электродеталей от влаги и нефтепродуктов.

Изоляционная прорезиненная лента представляет собой суровую тонкую хлопчатобумажную ткань (миткаль), пропитанную с одной или двух сторон липкой сырой резиновой смесью.

Липкая изоляционная лента – это пленочный пластик, покрытий слоем перхлорвинилового клея. Изоляционные ленты выпускают различных размеров и цветов. Для придания плотности и герметичности соединениям деталей машин (трубы, различные соединения и др.) и устранения возможного просачивания жидкости и прорыва газов используют прокладочные и уплотнительные материалы.

Паронит – листовой материал из асбеста, каучука и наполнителей. Применяют для уплотнения водяных и паровых магистралей, а также для уплотнения трубопроводов и арматуры для нефтепродуктов: бензина, керосина, масла.

Войлок – листовой пористый материал, изготовленный из волокон шерсти. Воздушные поры в нем составляют не менее 75% объема. Он обладает высокими тепло- и звукоизолирующими, а также амортизирующими свойствами. Войлок используют для набивки сальниковых уплотнений и изготовления прокладок.

Материал обычно используемых уплотнительных прокладок (паронит, картон и др.) не всегда обеспечивает надежную и длительную герметичность соединений. Под действием температуры и вибрации прокладки со временем претерпевают ряд изменений, теряют свои уплотняющие свойства, в них возникают разрывы и трещины. В процессе эксплуатации это приводит к утечке масла, топлива и др. Для устранения таких неисправностей применяют различные герметики.

Уплотняющая жидкая прокладка ГИПК-244 предназначена для герметизации неподвижных соединений деталей и сборочных единиц, работающих в водяной, пароводяной, кислотно-щелочной и маслобензиновых средах.

Уплотняющая замазка У-20А предназначена для герметизации соединений в воздушной и водяной средах.

Герметик Эластосил 137-83 герметизирует неподвижные соединения в водяной, пароводяной, кислотно-щелочной и масляной средах.

Анаэробный клей ДН-1 обеспечивает герметизацию соединений с зазорами до ОД 5 мм.

Минеральная вата – продукт переработки металлургических или топочных шлаков. Служит для изоляции поверхностей с низкими и высокими температурами нагрева. Возможно также применение минераловатных плит, проклеенных фенольной смолой или битумной эмульсией.

Важнейшее требование к обивочным материалам – необходимая механическая прочность, эластичность и износостойкость, от которых зависит срок их службы.

Обивочные материалы одновременно являются и декоративными, поэтому они должны иметь красивый внешний вид, иметь определенный цвет, рисунок, поверхность, выработку. Должны легко очищаться от пыли и других загрязнений и допускать обработку дезинфицирующими растворами. Важно, чтобы обивочные материалы допускали возможность их ремонта, в том числе методом склеивания.

Дерматин на молескине представляет собой хлопчатобумажную ткань, на которую нанесен тисненый слой нитроцеллюлозы с добавкой пигмента, пластификатора и наполнителя.

Автобим имеет в качестве основы также хлопчатобумажную ткань, на одну сторону которой нанесен тисненый слой хлорин-смолы с пластификатором и пигментом.

Эти материалы эластичны, влагостойки, износостойки, но чувствительны к повышенным и пониженным температурам, а также подвержены разрушающему действию активных растворителей.

Для обивочных работ, кроме указанных, применяется большая номенклатура других тканых и синтетических материалов.


3. Испытание металлов на ударную вязкость

 

Для оценки склонности материалов к хрупкому разрушению широко применяют испытания на ударный изгиб образцов с надрезом, в результате которых определяют ударную вязкость. Ударная вязкость оценивается работой, затраченной на ударный излом образца и отнесенной к площади его поперечного сечения в месте надреза.

Согласно ГОСТ 9454–78, для определения ударной вязкости применяют призматические образцы с надрезами различных типов. Самыми распространенными типами являются образцы с U-образным (рис. 2, а) и V-образным (рис. 2, б) надрезами.

Испытания на ударную вязкость проводят на маятниковом копре (рис. 3).

Работа К, МДж, затраченная на ударный излом образца, может быть определена по следующей формуле:

где G – вес маятника; h1 – высота подъема маятника до испытаний; h2высота подъема маятника после испытаний.

Рис. 2. Образцы для испытаний на ударную вязкость:

а – с U-образным надрезом; б – с V-образным надрезом

Рис. 3. Схема испытаний на ударную вязкость:

а – схема маятникового копра; брасположение образца на копре;

1 – корпус; 2 – маятник; 3 – образец

 

Указатель на шкале копра фиксирует величину работы К и проградуирован с учетом потерь (трение в подшипниках, сопротивление стрелки указателя, сопротивления воздуха и др.).

Ударная вязкость обозначается символом КС, МДж/м2, и подсчитывается как отношение работы К к площади поперечного сечения образца в надрезе F. Если образец с U-образным надрезом, то к символу добавляется буква U (KCU), а если с V-образным надрезом, то добавляется буква V (KCV).

Вместе с тем ударная вязкость является сложной механической характеристикой и состоит из двух составляющих: удельной работы зарождения трещины КСз и удельной работы ее распространения КСp , т.е.

Для охрупченных материалов основная часть работы идет на зарождение трещины, а работа распространения трещины незначительна. Для пластичных материалов работа распространения трещины имеет преобладающее значение. Анализ составляющих ударной вязкости позволяет более рационально выбрать материал и определить его назначение.

Существует несколько методов определения составляющих ударной вязкости. Наиболее широкое распространение получили методы Б.А. Дроздовского и А.П. Гуляева. По методу Б.А. Дроздовского испытывают ударные образцы с V-образным надрезом с заранее выращенной усталостной трещиной. Считается, что при разрушении образца вся работа динамического излома расходуется на распространение трещины, т. е. при таком испытании определяется величина КСр.

Рис. 4. Схема определения составляющих ударной вязкости по методу А.П. Гуляева

 

Работа зарождения трещины КС3 в этом случае подсчитывается как разность между полной ударной вязкостью образца без усталостной трещины КС и работой ее распространения КСр.

По методу А.П. Гуляева испытывают несколько ударных образцов, имеющих различный радиус округления в вершине надреза r. После испытаний и подсчета ударной вязкости каждого образца строится график (рис. 4). Экстраполируя прямую на ось ординат, получают удельную работу распространения трещины КСр. В этом случае образец с радиусом надреза, близким к нулю, отождествляется с образцом, имеющим усталостную трещину.

При сравнении оба метода дают достаточно близкие значения составляющих ударной вязкости.

 



0
рублей


© Магазин контрольных, курсовых и дипломных работ, 2008-2024 гг.

e-mail: studentshopadm@ya.ru

об АВТОРЕ работ

 

Вступи в группу https://vk.com/pravostudentshop

«Решаю задачи по праву на studentshop.ru»

Опыт решения задач по юриспруденции более 20 лет!