Вступи в группу https://vk.com/pravostudentshop

«Решаю задачи по праву на studentshop.ru»

Опыт решения задач по юриспруденции более 20 лет!

 

 

 

 


«Ответы на вопросы материаловедению»

/ Материаловедение
Конспект, 

Оглавление

1. Параметры кристаллической решетки. Типы кристаллических решеток

 

В кристалле частицы (ионы, атомы, молекулы), из которых построен кристалл, сближены до соприкосновения и располагаются различно, но закономерно по разным направлениям (рис. 1, а). Для упрощения пространственное изображение заменяют схемами (рис. 1, б), отмечая точками центры тяжести частиц. Кристаллы различаются симметрией расположения частиц.

Рис. 1. Расположение частиц в кристалле:

а – пространственное изображение; б – схема

 

Если в кристалле провести три направления х, у, z, не лежащих в одной плоскости, то расстояния между частицами, расположенными по этим направлениям, в общем случае неодинаковы и соответственно равны а, b, с.

Плоскости, параллельные координатным плоскостям, находящиеся на расстоянии а, b, с разбивают кристалл на множество параллелепипедов, равных и параллельно ориентированных. Наименьший параллелепипед называют элементарной ячейкой. Последовательное перемещение его образует пространственную кристаллическую решетку. Вершины параллелепипеда называют узлами пространственной решетки. С этими узлами совпадают центры тяжести частиц, из которых построен кристалл.

Для описания элементарной ячейки кристаллической решетки используют шесть величин: три отрезка, равные расстояниям а, b, с до ближайших частиц по осям координат, и три угла α, β, γ между этими отрезками.

Соотношения между этими величинами определяются симметрией, согласно которой все кристаллы подразделяют на семь систем (табл. 1).

Размер элементарной ячейки кристаллической решетки оценивают отрезки а, b, с. Их называют периодами решетки.

В большинстве случаев решетки имеют сложное строение, так как частицы находятся не только в узлах, но и на гранях или в центре решетки (рис. 2). О степени сложности судят по числу частиц, приходящихся на одну элементарную ячейку. В простой пространственной решетке (см. рис. 2, а) всегда на одну ячейку приходится одна частица. В каждой ячейке имеется восемь вершин, но каждая частица в вершине относится, в свою очередь, к восьми ячейкам. Таким образом, от узла на долю каждой ячейки приходится 1/8 объема, а всего узлов в ячейке восемь, следовательно, на ячейку приходится одна частица.

Таблица 1

Кристаллические системы элементов

 

В сложной пространственной решетке на одну ячейку всегда приходится больше одной частицы. На объемно-центрированную ячейку (см. рис. 2, б) приходятся две частицы: одна от вершины и другая центрирующая, которая относится только к данной ячейке. В гранецентрированной ячейке (см. рис. 2, в) имеются четыре частицы: одна от вершины и три от шести центрированных плоскостей, так как частица, находящаяся в центре плоскости, относится одновременно к двум ячейкам.

Система, период и число частиц, приходящихся на элементарную ячейку, полностью определяют расположение частиц в кристалле. Дополнительными характеристиками кристаллической решетки являются координационное число и коэффициент компактности.

 

Рис. 2. Типы элементарных ячеек кристаллических решеток:

а – простая; б, в – сложные 

 

Число ближайших равноудаленных частиц определяет координационное число К. Например, в решетке объемно-центрированного куба (ОЦК) для каждого атома число таких соседей будет равно восьми (К8). Для простой кубической решетки координационное число будет 6 (Кб), для гранецентрированной кубической решетки (ГЦК) – 12 (К12).

Отношение объема всех частиц, приходящихся на одну элементарную ячейку, ко всему объему элементарной ячейки определяет коэффициент компактности. Для простой кубической решетки его значение равно 0,52, для ОЦК – 0,68 и для ГЦК – 0,74.

Оставшееся пространство образуют поры, которые подразделяют на октаэдрические и тетраэдрические. На рис. 3 центры этих пор показаны маленькими точками на ГЦК решетке. Радиус октаэдрической поры составляет 0,41, а тетраэдрической поры – лишь 0,22 радиуса частицы.

 

Рис. 3. Октаэдрические (а) и тетраэдрические (б) поры в металлах с ГЦК решеткой

 

ОСНОВНЫЕ ТИПЫ КРИСТАЛЛИЧЕСКИХ РЕШЕТОК

Наиболее простой кристаллической решеткой у металлов является кубическая, имеющая две разновидности: кубическую объемно-центрированную (ОЦК) и кубическую гранецентрированную (ГЦК) (рис. 4, а, б). У обоих типов этих решеток основу ячеек составляют восемь атомов, образующих куб и находящихся в его вершинах. Остальные атомы находятся или в центре объема куба (один атом на пересечении диагоналей в решетке ОЦК), или в центре каждой из его граней (шесть атомов в решетке ГЦК). Кристаллические решетки ОЦК имеют альфа-железо, хром, ванадий, вольфрам, молибден, бета-титан и другие металлы. Решетку ГЦК имеют гамма-железо, алюминий, медь, никель, свинец и некоторые другие металлы.

Другой разновидностью кристаллических решеток у металлов является гексагональная плотноупакованная решетка (ГПУ) (рис. 4, в). Ячейка этой решетки представляет собой шестигранную призму с центрированными основаниями, между которыми на некотором расстоянии от центров трех граней расположены еще три атома. ГПУ имеют альфа-титан, магний, цинк, кадмий, бериллий и другие металлы.

 

Рис. 4. Основные типы кристаллических решеток металлов:

а – кубическая объемно-центрированная (ОЦК); б – кубическая гранецентрированная (ГЦК); в – гексагональная плотноупакованная (ГПУ)

 

В ячейках кристаллической решетки всех типов атомы касаются друг друга внешними слоями электронных оболочек. Межатомные силы сцепления, обеспечивающие морфологическую целостность кристаллической решетки, создаются электромагнитным взаимодействием, обусловленным наличием у атомов валентных электронов.

У металлов, находящихся в твердом состоянии, валентные электроны, освобождаясь от своих атомов, движутся между атомами, которые становятся положительно заряженными ионами. Принадлежащие всему зерну и образующие электронный «газ» свободные электроны, взаимодействуя с положительными ионами, обеспечивают целостность кристаллической решетки. Такая межатомная связь в кристаллической решетке получила название металлической. Она может существовать как между одноименными атомами в чистых металлах, так и между разнородными – в сплавах.

Прочность металла зависит от плотности упаковки его кристаллической решетки и особенностей строения его атомов (особенно валентного и подвалентного слоев электронной оболочки).

Плотность упаковки-решетки, главным образом, определяется числом атомов, приходящихся на одну ячейку решетки, и расстоянием между ними (например, у ОЦК два атома на ячейку, а у ГЦК – четыре).

Наиболее характерным расстоянием является параметр решетки, который равен расстоянию между ближайшими атомами, составляющими грань кристаллической ячейки (см. рис. 4, а, б, в). У ОЦК и ГЦК решеток этот параметр одинаков по всем трем направлениям в пространстве, а у ГПУ – с > а. Параметры кристаллических решеток металлов составляют от 0,2 до 0,7 нм.

Следует помнить, что сила взаимодействия между атомами уменьшается из-за их тепловых колебаний. Результирующая сила взаимодействия тем меньше, чем выше температура.


2. Пластическая деформация. Наклеп. Рекристаллизация

 

Формообразование обработкой давлением основано на способности заготовок из металлов и других материалов изменять свою форму без разрушения под действием внешних сил. Обработка давлением – один из прогрессивных, экономичных и высокопроизводительных способов производства заготовок в машино- и приборостроении. Почти 90% всей выплавляемой стали и 60% цветных металлов и сплавов подвергают тем или иным способам обработки давлением – прокатке, прессованию, волочению, ковке, объемной или листовой штамповке.

Обработкой давлением могут быть получены заготовки или детали из материалов, обладающих пластичностью, т.е. способностью необратимо деформироваться без разрушения под действием внешних сил. Нарушение сплошности строения материала деформируемой заготовки в большинстве случаев недопустимо и приводит к браку.

Установлено, что в монокристаллах пластическая деформация происходит под действием касательных напряжений, вызывающих скольжение атомарных плоскостей друг относительно друга – явление сдвига. Плоскости скольжения характеризуются наиболее плотной упаковкой атомов в направлениях, по которым межатомные расстояния минимальны. Поэтому сдвиг атомов в этих плоскостях приводит к минимальным нарушениям правильности их расположения, а следовательно, смешение может быть осуществлено при наименьших напряжениях. Чем больше таких плоскостей в кристаллитах, тем более пластичен металл. Одной из главных причин, определяющих плоскости скольжения, является наличие в них дислокаций. Перемещаясь под действием сил вдоль плоскости скольжения последовательно за счет единичных перемещений атомов, дислокации способствуют снижению напряжений, при которых начинается процесс пластического деформирования, и, кроме того, существенно увеличивают пластичность металла. После окончания процесса скольжения по одной или нескольким плоскостям, что означает, как правило, выход дислокаций, расположенных в этих плоскостях, за границу кристаллита, начинается процесс скольжения в других плоскостях, где сопротивление было более высоким. Усилие деформирования будет возрастать по мере включения в процесс скольжения новых плоскостей со все более высоким уровнем сопротивления движению дислокаций.

Таким образом, механизм пластического деформирования скольжением при обработке давлением можно представить как лавинообразный процесс движения дислокаций вдоль плоскостей скольжения под влиянием сдвиговых напряжений.

Другой механизм пластической деформации – двойникование, или двойниковый сдвиг – чаще всего встречается в металлах и сплавах, имеющих гексагональную или объемно центрированную кубическую решетку. В отличие от обычного сдвига двойниковый совершается только раз и не приводит к значительным пластическим деформациям. Однако вместе с ним появляются дополнительные очаги сдвиговой деформации по механизму обычного скольжения.

Именно возможностью сочетания двойникования и сдвига объясняется высокая пластичность меди, аустенита, серебра, α-латуни, цинка, магния и др.

Процессы, происходящие при деформировании поликристаллических тел, в которых кристаллиты разделены границами и имеют плоскости скольжения, различно ориентированные в пространстве, значительно более сложны, так как в поликристаллическом теле деформация одного, отдельно взятого зерна практически невозможна, любое перемещение атомов в результате скольжения или двойникования обязательно вызывает соответствующие групповые перемещения по границам зерен или в самих соседних зернах.

Механизм деформирования поликристаллического тела при обработке давлением можно представить в такой последовательности. В начале под действием приложенных сил начинается сдвиговая пластическая деформация в зернах, плоскости скольжения которых совпадают или близки вектору максимальных касательных напряжений, а также по плоскостям, плотность дислокаций в которых максимальна. Затем последовательно в процесс включаются плоскости, сопротивление сдвигу которых более высокое. Одновременно происходит смещение и поворот соседних зерен, т. е. переориентация их в пространстве и по отношению к действующим силам. Зерна, переориентированные в положения, благоприятные для деформирования, включаются в этот процесс, вызывая поворот других, соседних с ними зерен, и т.д.

Одновременно со сдвигом протекают и процессы двойникования. В результате структура металла, подвергнутого значительным пластическим деформациям, характеризуется вытянутыми зернами, ориентированными в направлении интенсивного течения металла.

При пластическом деформировании металлов нужная форма заготовки достигается перемещением частиц металла в новое положение при условии их устойчивого равновесия. При этом первоначальная масса металла, претерпевшего формообразования, остается постоянной. Так как процесс деформирования совершается с непременным приложением растягивающих или сжимающих сил, то плотность материала при этом несколько изменяется, как правило, увеличивается. Особенно это заметно при начальных стадиях обработки давлением исходного литого материала. При деформировании устраняются неплотности, возникшие в металле в процессе затвердевания из жидкой фазы. При дальнейшем деформировании, а также при деформировании металла после прокатки изменение плотности весьма незначительно.

Пластическая деформация может производиться в холодном либо в горячем состоянии металла. В результате холодной деформации прочностные характеристики и твердость с увеличением степени деформации возрастают, а пластические свойства уменьшаются, вплоть до полного их исчерпания. Объясняется это тем, что с возрастанием деформаций по мере исчерпания возможности скольжения по сдвиговым плоскостям с малым сопротивлением деформированию в процесс вступают новые системы скольжения, требующие все больших напряжений для сдвига. Происходит заклинивание зерен, дисклокации перемешаются на их границы, препятствующие скольжению, а также увеличивается плотность дислокаций. Одновременно с этим заметно изменяются и другие физические свойства металла: электрическое сопротивление, магнитная проницаемость, теплопроводность.

Совокупность изменения свойств металла в результате холодной деформации называют упрочнением или НАКЛЕПОМ. Интенсивность нарастания наклепа по мере увеличения степени деформации неодинакова. В начальный момент деформирования он резко увеличивается, затем интенсивность снижается.

Поликристаллы упрочняются сильнее, чем монокристаллы, металлы с мелкозернистой структурой, твердые растворы наклепываются больше, чем крупнозернистые или чистые металлы.

Наклеп не всегда является отрицательным фактором, затрудняющим процесс получения заготовки пластическим деформированием. Иногда его используют для получения изделия с необходимыми полезными свойствами, часто в сочетании с последующей термической обработкой. Так, например, холодной пластической деформацией можно в 2–3 раза повысить предел прочности и особенно предел текучести, например гвозди должны быть изготовлены и могут применяться только из наклепанного металла, гвозди, у которых наклеп снят термической обработкой (побывавшие в печи), к применению непригодны.

В то же время наклеп существенно увеличивает сопротивление металла деформированию, что вызывает необходимость применения машин большей мощности.

Понижение пластических свойств наклепанного металла может быть весьма значительным. Например, у низкоуглеродистой стали относительное удлинение уменьшается с 30–35 до 5–6%, т. е. почти в 6 раз.

Термодинамическая неустойчивость металла, вызванная искажением кристаллической решетки в процессе холодного пластического деформирования, побуждает систему перейти к более равновесному состоянию. Поэтому наклепанный металл при вылеживании даже при обычных температурах в некоторой степени восстанавливает свои первоначальные свойства: снижаются прочность и твердость; повышается относительное удлинение; снижаются пики локальных искажений кристаллического строения; уменьшаются макро- и микронапряжения. При этом не происходит каких-либо изменений в структуре. Как известно, совокупность таких изменений в холодно-деформируемом металле называют отдыхом или возвратом. Интенсивность возврата при комнатной температуре идет тем активнее, чем ниже температура плавления металла. С увеличением температуры процесс идет существенно быстрее, а время снятия пиков напряжения и хрупкости уменьшается.

Деформирование заготовки при температуре выше температуры рекристаллизации (Трек) сопровождается образованием вытянутых упрочненных зерен и немедленным снятием наклепа в процессе рекристаллизации.

Процесс обработки давлением, при котором скорость рекристаллизации достаточна для полного протекания разупрочнения, а конечная структура металла оказывается равноосной без следов упрочнения, называется горячей деформацией.

Если скорость рекристаллизации недостаточна для полного снятия упрочнения, получаемого металлом в процессе деформирования, то такая обработка называется неполной горячей деформацией. Неполная горячая деформация приводит к получению неоднородной структуры, снижению прочностных и особенно пластических свойств.

При горячей деформации сопротивление металла деформированию уменьшается в 8–10 раз и остается неизменным в процессе обработки при условии, что температура металла остается выше, чем Трек.

Горячая деформация предпочтительна для обработки малопластичных металлов и при применении способов обработки давлением с большими скоростями деформаций.

Горячая пластическая обработка металлов находит большее применение в промышленности, несмотря на дополнительные затраты в связи с необходимостью иметь специальное оборудование и дополнительные расходы энергии. При горячей деформации нужно поддерживать необходимую температуру в ходе самого процесса обработки давлением, особенно при производстве изделий небольшого объема и с развитой поверхностью. В этом случае задача усложняется в связи с потерей теплоты при контакте с деформирующим инструментом.


3. Процесс прессования. Прямое и обратное прессование

 

Прессование – процесс выдавливания металла из контейнера через одно или несколько отверстий в матрице с площадью меньшей, чем поперечное сечение исходной заготовки. При прессовании реализуется одна из самых благоприятных схем нагружения, обеспечивающая максимальную пластичность – всестороннее неравномерное сжатие. Это позволяет обрабатывать даже малопластитные материалы. Обычно коэффициент вытяжки при прессовании составляет 10–50, а в отдельных случаях может быть значительно выше. 

Прессование может выполняться двумя методами – прямым и обратным. При прямом методе (рис. 1, а) заготовку 1 помещают в полость контейнера 2 и с помощью мощного пресса через пуансон 3 и пресс-шайбу 4 выдавливают нагретый или холодный металл через отверстие в матрице 5, укрепленной в матрице-держателе 6. 

При обратном прессовании (рис. 1, б) давление пресса предается через полый пуансон 3 с смонтированной внутри его матрицей 5. Таким образом, металл заготовки 1 течет навстречу движению пуансона. 

При прямом прессовании требуется прикладывать значительно большее усилие, так как часть его затрачивается на преодоление трения при перемещении металла заготовки внутри матрицы. Отчасти поэтому значительная часть металла заготовки не может быть выдавлена из контейнера. Остающаяся его часть – пресс-остаток – составляет в отдельных случаях 30–40% от массы исходной заготовки.

Усилие при обратном прессовании примерно на 25% меньше, пресс-остаток также почти вдвое меньше, чем при прямом.

Однако сложность конструкции пресса, ограниченность размеров получаемых изделий по длине препятствуют широкому применению способа обратного прессования.

Рис. 1. Схемы прессования прямого (а), обратного (б) и получение пустотелого (в) профиля на примере трубы:

1 – заготовка; 2 – контейнер; 3 – пуансон; 4 – пресс-шайба; 5 – матрица; 6 – матрица-держатель; 7– заглушка; 8игла

 

К достоинствам процесса прессования следует отнести возможность получения изделий сложных профилей, в том числе и пустотелых, не только из высокопластичных, но и малопластичных металлов и сплавов; универсальность применяемого оборудования, позволяющего легко переходить на производство профилей различных конфигураций; достаточно высокую точность размеров и малую шероховатость поверхности получаемых изделий. На рис. 1,в представлена схема получения пустотелого профиля типа тонкостенной трубы. Инструмент для прессования – контейнер, матрица, пресс-шайбы, иглы – работают в очень сложных условиях: больших удельных, давлений до 150 кгс/мм2 и часто при высоких температурах. Температурный интервал прессования цветных металлов 500–900°С, а сталей, никелевых и титановых сплавов 1000–1250°С. Поэтому для изготовления инструмента применяют дорогие материалы с повышенными жаростойкостью и прочностными характеристиками. Стоимость комплекта инструмента для получения пустотелых профилей иногда достигает 15% от стоимости всего агрегата.

В качестве силового агрегата для прессования наибольшее распространение получили гидравлические прессы с усилием прессования 1000–5000 т. Они не боятся перегрузки, позволяют регулировать в широких пределах скорость перемещения силового плунжера, легко автоматизируются, в том числе с помощью систем программного управления.

Прессование широко применяют для получения изделий из меди, латуни, бронзы, алюминия, магния, цинка, титана, сталей, пластмасс и др.

Качество получаемого продукта в существенной степени зависит от правильности выбранного режима и качества исходной заготовки. Например, минимальная вытяжка должна быть не менее 10-кратной; допускаются вытяжки весьма значительные: для меди – 280, латуни – 700, алюминия – 1000.

Считается оптимальным отношение длины к диаметру заготовки, равное 2–3 при производстве сплошных профилей и 1,5–2 для пустотелых.

Подготовка исходной заготовки заключается в зачистке поверхности и удалении обнаруженных дефектов, прошивке отверстий при производстве полых профилей, нанесении технологической смазки на поверхность. Роль смазки чрезвычайно высока: она снижает усилие деформирования, уменьшает неравномерность течения металла при прессовании, удлиняет срок службы инструмента, повышает качество поверхности.

Выбор состава смазки зависит от рода обрабатываемого материала. Это может быть графит, добавляемый в минеральные масла, добавки канифоли. Для стали, сплавов никеля и титана, прессование которых ведут при высоких температурах, в качестве смазки применяют стекло.

Прессованием получают изделия различного профиля с размером сечения до 400 мм.

На рис. 2 представлены примеры поперечного сечения профилей, полученных прессованием.

 



0
рублей


© Магазин контрольных, курсовых и дипломных работ, 2008-2024 гг.

e-mail: studentshopadm@ya.ru

об АВТОРЕ работ

 

Вступи в группу https://vk.com/pravostudentshop

«Решаю задачи по праву на studentshop.ru»

Опыт решения задач по юриспруденции более 20 лет!